
Status of the
Layer-Based SVG Engine

in WebKit

Web Engines Hackfest 2024
A Coruña, 3rd June 2024

Nikolas Zimmermann nzimmermann@igalia.com

1

mailto:nzimmermann@igalia.com


A short introduction
The LBSE work is a joint effort:

Nikolas Zimmermann, Igalian since 2019 - located in Germany
Rob Buis, Igalian since 2017 - located in Ireland

Founders of kdom, kcanvas, ksvg2/khtml2
khtml contributors since 2001
WebKit contributors since 2005
WebKit reviewers since February 2007

2



Topics

1) Introduction to LBSE

2) Upstreaming status

3) Outlook

3



1) Introduction to LBSE

4



What is LBSE?

Layer-Based SVG Engine

Codename for new SVG engine in WebKit
Started as Proof-Of-Concept in September 2019
Goal: resolve architectural issues present since 15+ years
Developed by Igalia, funded by Igalia, Vorwerk and Wix.

5



What is LBSE?

Layer-Based SVG Engine

Enable hardware-accelerated compositing / hardware-accelerated transform animations
Enable 3D transform support for arbitrary SVG content, unlock perspective transformations
Unify HTML/SVG rendering pipelines, which are mutually exclusive at present
Proof-Of-Concept patch passed all existing layout tests in October 2021 (1)
Performance comparable to legacy engine in e.g. MotionMark (2)

(1) Compositing/z-index/will-change/... was only tested in most basic scenarios for SVG.
(2) MotionMark suffers from layer overhead ⟶ LBSE ~2-4% slower.

6



How is it achieved?
Let SVG participate in the layer tree, which handles compositing, 3D transformations, etc. for
HTML/CSS.
Remove knowledge about transform handling out of the SVG renderers.
Remove SVG specific clipping/marker/masking/filter code
Redesign SVG render tree to be convenient for the existing CSS code.
(Coordinate system decisions, etc.)
Reuse as much as code possible in RenderLayer - without SVG specific changes.

7



Evolution since 2021
The "final" version of the prototype was a drop-in replacement for the old SVG engine.

During and after the WebKit contributors meeting 2021, a plan was established how LBSE can be
integrated into WebKit, without violating the usual high standards with respect to reviewability.

As a consequence...

No way to use any existing patch as-is from LBSE downstream
Lots of manual work necessary.
It is equal to yet another rewrite.

8



Upstreaming plan
It was decided to bring-up LBSE in small, reviewable atomic pieces in parallel

to the legacy SVG engine, share code where it makes sense, and split elsewhere.

All the code is behind a compile-time flag ENABLE(LAYER_BASED_SVG_ENGINE)
and an additional setting LayerBasedSVGEngineEnabled that can be

used to toggle between LBSE and the legacy SVG engine at runtime.

⟶ Upstreaming started Dec 2021

9



Let's have a look at the current status...

10



2) Upstreaming status

11



Progress tracking
The bug report  tracks the upstreaming
status in WebKit Bugzilla; individual commits are tracked on .

161 patches so far directly related to LBSE
(first: 29. November 2021, current: 10. April 2024).

Overall status ~ 87%

"#90738 - Harmonize HTML & SVG rendering"
"GitHub WebKitIgalia #1"

12

https://bugs.webkit.org/show_bug.cgi?id=90738
https://github.com/nikolaszimmermann/WebKitIgalia/issues/1


Achievements
Since the last WebKit Contributors Meeting in

2023, two major tasks were finished. This work
was funded by Wix, bringing LBSE closer to a

shipable state.

For more details, see the blog post .

1) Re-design resource invalidation logic
2) Implement all SVG resources for LBSE

https://wpewebkit.org/blog/status-of-lbse-in-webkit.html

13

https://wpewebkit.org/blog/status-of-lbse-in-webkit.html


What is a SVG resource?

<defs>

    <linearGradient id="aGradient">

        <stop offset="10%" stop-color="blue"/>

        <stop offset="90%" stop-color="green"/>

    </linearGradient>

    <clipPath id="aClip">

        <circle cx="50" cy="50" r="50"/>

    </clipPath>

</defs>

<rect width="100" height="100" fill="url(#aGradient)" clip-path="url(#aClip)"/>

14



Status of resources in October 2023
LBSE support solids fill / stroke operations for shapes / text ✅
No support for gradients / patterns / markers
No support for clipping / masking
No support for filters

Our plan was to redesign the resource handling, avoiding design mistakes from the legacy SVG
engine, and offering support for all SVG painting features in an unified way for both HTML elements

and SVG elements.

⚠️ Caveat: We can not easily re-use the resource logic from the legacy SVG engine... ⚠️

15



Legacy SVG engine design issues
Resource invalidation is fundamentally broken in the legacy SVG engine.

Example: A <mask> is applied to a <path>, and a child of that <mask> references a <clipPath>.

DOM tree

<defs>

  <clipPath id="clip">

    <circle r="10"/>

  </clipPath>

  <mask id="mask">

    <rect x="5" clip-path="url(#clip)"/>

  </mask>

</defs>

<path mask="url(#mask)"/>

Render tree

RenderSVGHiddenContainer ("defs")

    RenderSVGResourceClipper ("clip")

        RenderSVGEllipse ("circle", r=10)

    RenderSVGResourceMasker ("mask")

        RenderSVGRect ("rect", x=5) | uses "clip" resource

RenderSVGPath ("path") | uses "mask" resource

16



Legacy SVG engine design issues
How to handle nested invalidations?

An early design decision was to re-use the
layout()  logic of the render tree to

handle resource invalidations. Consider
changing the radius to 20 dynamically
from JavaScript.

What happens?

Render tree

RenderSVGHiddenContainer ("defs")

    RenderSVGResourceClipper ("clip")

        RenderSVGEllipse ("circle", r=10)

    RenderSVGResourceMasker ("mask")

        RenderSVGRect ("rect", x=5) | uses "clip" resource

RenderSVGPath ("path") | uses "mask" resource

17



1. Parse attribute in SVGCircleElement , update

presentational style and trigger style invalidation.

2. During style resolving RenderSVGEllipse  receives a

new style with a changed radius requiring a re-layout,
which is triggered asynchronously.

3. The resources in the ancestor chain are notified about
the style change, clients of resources are invalidated
recursively. RenderSVGRect  is marked for layout,

followed by RenderSVGPath .

4. After style resolving finished, a render tree re-layout is
triggered asynchronously.

Render tree

RenderSVGHiddenContainer ("defs")

    RenderSVGResourceClipper ("clip")

        RenderSVGEllipse ("circle", r=10)

    RenderSVGResourceMasker ("mask")

        RenderSVGRect ("rect", x=5) | uses "clip" resource

RenderSVGPath ("path") | uses "mask" resource

→ Unnecessary layout()  for subtrees containing resources, expensive tree walks, etc.

18



Resource handling redesign
Relevant call graphs:

1. JS calling setAttribute(...) , triggering the invalidation chain.

frame  #0: `WebCore::Element::invalidateStyle(this=0x0000000164011d60)

frame  #1: `WebCore::SVGElement::setPresentationalHintStyleIsDirty(this=0x0000000164011d60)

frame  #2: `WebCore::SVGCircleElement::svgAttributeChanged(this=0x0000000164011d60)

frame  #3: `WebCore::SVGElement::attributeChanged(this=0x0000000164011d60)

frame  #4: `WebCore::SVGGraphicsElement::attributeChanged(this=0x0000000164011d60)

frame  #5: `WebCore::SVGGeometryElement::attributeChanged(this=0x0000000164011d60)

frame  #6: `WebCore::SVGCircleElement::attributeChanged(this=0x0000000164011d60)

frame  #7: `WebCore::Element::notifyAttributeChanged(this=0x0000000164011d60)

frame  #8: `WebCore::Element::didModifyAttribute(this=0x0000000164011d60)

frame  #9: `WebCore::Element::setAttributeInternal(this=0x0000000164011d60)

frame #10: `WebCore::Element::setAttribute(this=0x0000000164011d60)

frame #11: `WebCore::jsElementPrototypeFunction_setAttributeBody(this=0x000000016f371b88)::...

19



Resource handling redesign
2. RenderSVGEllipse  is marked for layout (as consequence of the previous style invalidation)

frame  #0: WebCore::RenderObject::setNeedsLayout(this=0x00000001640056a0)

frame  #1: WebCore::RenderObject::setNeedsLayoutAndPrefWidthsRecalc(this=0x00000001640056a0)

frame  #2: WebCore::RenderElement::styleDidChange(this=0x00000001640056a0, diff=Layout, oldStyle=...)

frame  #3: WebCore::LegacyRenderSVGModelObject::styleDidChange(this=0x00000001640056a0, diff=Layout, old

frame  #4: WebCore::RenderElement::setStyle(this=0x00000001640056a0, ...)

frame  #5: WebCore::RenderTreeUpdater::updateRendererStyle(this=0x000000016f374b50, ...)

frame  #6: WebCore::RenderTreeUpdater::updateElementRenderer(this=0x000000016f374b50, ...)

frame  #7: WebCore::RenderTreeUpdater::updateRenderTree(this=0x000000016f374b50, ...)

frame  #8: WebCore::RenderTreeUpdater::commit(this=0x000000016f374b50, ...)

frame  #9: WebCore::Document::updateRenderTree(this=0x0000000116145a00, ...)

frame #10: WebCore::Document::resolveStyle(this=0x0000000116145a00, ...)

frame #11: WebCore::Document::updateStyleIfNeeded(this=0x0000000116145a00)

20



Resource handling redesign
Relevant call graphs:

3. RenderSVGRect  is marked for layout (as it uses mask, which uses clip, which got modified)

frame  #0: `WebCore::RenderObject::setNeedsLayout(this=0x0000000164005980, markParents=MarkContainingBlo

frame  #1: `WebCore::RenderSVGResource::markForLayoutAndParentResourceInvalidation(object=0x000000016400

frame  #2: `WebCore::LegacyRenderSVGResourceContainer::markAllClientsForInvalidation(this=0x000000016400

frame  #3: `WebCore::LegacyRenderSVGResourceClipper::removeAllClientsFromCache(this=0x0000000164005520)

frame  #4: `WebCore::RenderSVGResource::markForLayoutAndParentResourceInvalidation(object=0x000000016400

frame  #5: `WebCore::SVGResourcesCache::clientStyleChanged(renderer=0x00000001640056a0, diff=Layout, old

frame  #6: `WebCore::LegacyRenderSVGModelObject::styleDidChange(this=0x00000001640056a0, diff=Layout, ol

frame  #7: `WebCore::RenderElement::setStyle(this=0x00000001640056a0, ...)

frame  #8: `WebCore::RenderTreeUpdater::updateRendererStyle(this=0x000000016f374b50, ...)

...

frame #14: `WebCore::Document::updateStyleIfNeeded(this=0x0000000116145a00)

21



⚠️ Calling setNeedsLayout  from within layout  is evil and inefficient. ⚠️

Furthermore the correctness of the invalidation chain depends on the element order in DOM.

This is known since a long time, dating back to at least 11 years ago:

...

Plan presented during WebKit Contributors Meeting in October 2023:

1) Re-design resource invalidation logic
2) Implement all SVG resources for LBSE

Bug #81515 - SVG Resources layout needs refactoring
Bug #179788 - Make RenderSVGResource::markForLayoutAndParentResourceInvalidation() more robust
Bug #207451 - RenderSVGShape invalidates all its resources when it needs layout, but is that necessary?
Bug #208903 - [SVG] RenderSVGResourceContainer's style invalidation should be a pre-layout task
Bug #242420 - ☂️ avoid invalidating SVG resources when referencing element changes layout

22

https://webkit.org/b/81515
https://webkit.org/b/179788
https://webkit.org/b/207451
https://webkit.org/b/208903
https://webkit.org/b/242420


Status 2024

1) Re-design resource invalidation logic ✅
A new approach, re-using similar logic from CSS invalidation, was implemented.
All code landed upstream.

2) Implement all SVG resources for LBSE ⏳
LBSE support solids fill / stroke operations for shapes / text ✅
Complete support for gradients / patterns / markers ✅
Complete support for clipping / masking ✅
Complete support for filters ⏳ (under review)

23



24



3) Outlook

25



Short-term
⚠️ Ensure funding for LBSE work. ⚠️
We need more partners that help us to get LBSE across the finish line.

Finish <filter>  work (Apple).

Finish <text> /<tspan>  related repainting issues

Verify invalidation is complete for all SVG resources, used in HTML/SVG contexts.

Perform security audit: fuzzing, ASAN -- try the whole arsenal.

26



Long-term
⚠️ Ensure funding for LBSE work. ⚠️

Finish LBSE implementation, such that all layout tests pass.

Ensure LBSE is at least as fast as the legacy engine in any standard benchmark.

Reduce RenderLayer overhead.
Selectively construct RenderLayers only if necessary.
... (there are more ideas in the pipeline, that need testing)

Final task: Turn on LBSE by default. Remove legacy SVG engine.

27



Thanks for your attention!

28



29


