
Nova JavaScript 
Engine - Exploring a 
Data-Oriented 
Engine Design

Web Engines Hackfest 2024
June 3rd, 2024
Aapo Alasuutari



About me and Nova

● Work at Valmet Automation as the Chief Design Engineer of the UI team
○ Also a freelance contractor for Deno Land Inc

● Not exceedingly performance critical, but user experience is very important
○ Poor animation performance really hurts us

○ See: Hummingbird HTML renderer by Coherent Labs

● Nova engine started from Andreu Botella’s joke nearly 2 years ago

● 1 year ago I heard and got interested in data-oriented design and wanted to apply it to the 

engine



Data-oriented design

● Know your data, and how it is used

● Design your data structures for the most common use case

● Your program is not a one-off that touches one thing once
○ Loops, iterations, algorithms form the majority of your program’s work: Think in multiples

● Aim to get the most out of your cache lines on the most common cases

● Ignore the singular case: It’s a one-off and its performance is thus essentially meaningless

How quick is it to map over P0’s of 8 of these objects? What about P2’s?

How quick is it to get P0 out of this object? What about P2?



Improved cache line usage but at what cost?

● Object is no longer just a heap pointer, as its data is spread out over multiple cache lines

● Object need not be bigger: Use parallel vectors to store object data! Object is an index!

● All objects’ heap data must now be same size for the parallel vector to work
○ Either all objects heap data is as big as the biggest, or…

○ All exotic objects get their own heap vectors!

○ Embedder slots are not a thing

● Value is a tagged union containing a byte-size tag and a heap index or stack data
○ Currently 64 bits in size, can take down to 32 bits if indexes only go up to 16.7 million

● Better cache line usage, that’s it I guess?
○ No! Demand more! Think of the common use cases!

○ Array? Prototype not needed! Properties not needed!

○ ArrayBuffer? None of the usual stuff is needed!



Array heap data in Nova

struct ArrayHeapData {
   pub object_index: BackingObjectOrRealm,
   pub elements: SealableElementsVector,
}

● 16 (4 + 12) bytes, 4 on a cache line; can be split and minimized into 4 + 8 bytes
● Common case is to access elements or length

○ Pessimise prototype and properties access into “ordinary object” backing store
○ Optimise for mapping over multiple items
○ If split and minimized, that’s 8 elements pointers + lengths per cache line read!

● Elements also live in heap vectors!
○ Imagine length 2 element arrays: Object.entries() of 8 keys-values on the same cache line

struct ElementArray2Pow8 {
   pub values: Vec<Option<[Option<Value>; usize::pow(2, 8)]>>,
   pub descriptors: HashMap<ElementIndex, HashMap<u32, ElementDescriptor>>,
}



Improved cache line usage but only if the items 
are on the same cache line

● Axiom of GC systems: Most objects die young
○ Corollary: Most objects live together!

● All heap data of type T is created in the same Vec<T>

● Upon GC, the Vec<T> is drained of unreachable items and items are shifted down
○ Vectors are always packed

○ Data that was created together stays together

● All intra-heap indexes (references) must be realigned after GC
○ Small mercies: This is simple to calculate and is an embarrassingly parallel algorithm

● As a consequence, the heap does not generally fragment over time

● Nice benefit: post-GC high water mark acts as the nursery separator for Nth GC after 

current
○ No need for a separate nursery!



In conclusion, the upsides

● Excellent cache line usage (potential) for a dynamically typed language

● Vector-based heap is simple to reason about and provides interesting opportunities

● Tagged union based Value requires no pointer shenanigans, does not leak heap pointers 

and does not suffer from type confusion attacks
○ The 64-bit version can also carry quite a bit of on-stack data (i56, char[7])

● Properly exotic objects have a really easy time separating their concerns from general 

object concerns



And then the downsides

● Pessimising odd cases does pessimise them!
○ Objects hold no elements; indexed properties are just properties

○ Arrays with named properties need an extra indirection to get to the backing object

● Special internal slot cases, shared ownership of internal data forces either yet another 

heap vector or a pessimising of the common case
○ Promise resolving, rejecting functions: Do all BuiltinFunctions have the extra internal slots? Or are 

these special functions in the engine?

○ Promise Capability Record is either a reference counted pointer, or yet another heap vector

● Each exotic object requires a new implementation of internal methods
○ No inheritance, accessing heap data is always different: Implementations are all very similar but 

different

● Performance of GC remains to be proven
○ Can the heap vector compaction and index realigning be fast enough to be competitive?

○ As the heap size grows, this only gets worse



Q&A
https://github.com/trynova/nova

https://www.youtube.com/watch?v=WKGo1k47eYQ

Come talk to me and/or Andreu afterwards

https://github.com/trynova/nova
https://www.youtube.com/watch?v=WKGo1k47eYQ


Bonus: Where are we?

● Andreu working on test262 runner
○ ~3% passing! :)

○ Those are likely just the parser tests, oxc_parser passes them for us :(

● Can run trivial scripts with loops and if-elses

● Cannot run for-let / for-const

● No Promises, no jobs (callbacks)



Bonus: Rebels without a cause?

● In order of importance / complexity:
○ Have fun ✅
○ Try out and prove data-oriented design in a JavaScript engine context

○ Get a simplified, embeddable JS engine that can be feature-flagged to eg. drop out unneeded 

complexity like array-object features

○ Serve our personal websites using Nova

○ Secret (shh): Become Servo’s JavaScript engine

○ Super-secret (shhhh!): Become Deno’s JavaScript engine

○ Cause a revolution in engine and ECMAScript design

○ Take over the world



Bonus: Potential BuiltinFunction call API

● Usual function call API is uniform, and only optimised code may have some “Fast API” that 

is more exact

● What if instead we enumerate up to 2^8 different call APIs?
○ Takes this_value

○ Takes new_target (optional or not?)

○ 0..N parameters

● Interpreter copies the enumeration and the function pointer, and optimises work based 

on this

● Could this provide a “Fast API light” by default?

● What about parameter type definitions?



Bonus: GC marking, sweeping, Rust, and 
thread-safety

● Marking: N marker threads run through vectors of incoming indexes for Vec<T>, generate new work of 
based on items found in these items. New work goes into Vec<Index<T>>, finally gets sent to the proper 
thread / put into a work pool.

● Sweeping: Stop the world, re-mark from dirty items, then calculate for each Vec<T> which items need to 
shift down and by how much. Farm this data out to N threads and shift items down; dropped items get 
overridden, live items have their internal indexes shifted down.

● One writer, multiple readers working on data; Rust doesn’t like this! The Heap must be filled with locks or 
Atomics

○ Choose Atomics!
● Define own wrappers around Atomics

○ MutatorOnly (non-atomic, only mutator can read&write)
○ Mutable (atomic, only mutator can write, readers can read)
○ Take advantage of wrapper-provided proofs to generally allow safe usage of Relaxed (though not always)

● Three states of the engine:
○ Mutator only, readers do not exist: Mutator can do work without atomics, but this is mostly not useful
○ Mutator & Readers, stop-the-world allowed: Values cannot live on stack, require indirection
○ Mutator & Readers, stop-the-world disallowed: Values can live directly on stack, use this for tight algorithms

● Use Rust type system to separate the states, prove Value lifetime on stack


