JavaScript Modules:
Past, Present and Future

NICOLO RIBAUDO

Y @NicoloRibaudo @ https://nicr.dev () @nicolo-ribaudo

NICOLO RIBAUDO

Working at Igalia on web standards
TC39 delegate

Maintaining Babel, the JavaScript compiler

n iga lia in collaboration with Bloomberg

Open Source Consultancy

@ https://nicr.dev

The original "modules" system

Back in the day, JavaScript was mostly used to add small bits of interactivity to
web pages. There were no "modules", and a few external libraries were loaded
installing properties directly on the window object.

<script src="https://code.jquery.com/jquery.min.js"></script>
<script>
$ (document) . ready (function () {
$("#hello") .css("color", "red");
H
</script>

@ https://nicr.dev

2009: Common]jS

@ https://nicr.dev

What Server Side JavaScript needs

Server side JavaScript technology has been around for a long time. Netscape offered

server side JavaScript in their server software back in 1996, and Helma has existed for

JavaScript needs a standard way to include other modules and for those modules to
live in discreet namespaces. There are easy ways to do namespaces, but there’s no
standard programmatic way to load a module (once/). This is really important, because

server side apps can include a lot of code and will likely mix and match parts that meet

those standard interfaces.

https://www.blueskyonmars.com/2009/01/29/what-server-side-javascript-needs/

2009: Common]jS

CommonJSImplementation (function (require, exports, module) ({

var chalk = require("chalk") ;

. Import other

modules
exports.error = function (message) ({

console.log(chalk.red (message)) ;

}i Expose values
1y ; from this module

@ https://nicr.dev

2009: Common]jS

e An effort to standardize a modules system and a set of built-in APIs across
multiple server-side environments

Common])S Modules/1.1

e Only define the "module interface", implementations must bring their own
runtime loader
e Implemented by Node.js, Narshall, SproutCore, and many others

https://arstechnica.com/information-technology/2009/12/commonjs-effort-sets-javascript-on-path-for-world-domination/

@ https://nicr.dev

https://arstechnica.com/information-technology/2009/12/commonjs-effort-sets-javascript-on-path-for-world-domination/

2009: Common]jS

CommonJS' require is synchronous: how to design a module system that
works in the browser?

Common]S Modules/Transport/C and Modules/AsynchronousDefinition

Pre-declare all the dependencies that need to be loaded, and only start
evaluating code once everything is ready.

https://wiki.commonjs.org/wiki/Modules/AsynchronousDefinition
https://github.com/amdjs/amdjs-api/wiki/AMD

@ https://nicr.dev

https://wiki.commonjs.org/wiki/Modules/AsynchronousDefinition
https://github.com/amdjs/amdjs-api/wiki/AMD

2010: AMD

Pre-declare all the dependencies that need to be loaded, and only start
evaluating code once everything is ready.

define ("alpha", ["require", "exports", "beta"], function (require, exports, beta) {
exports.verb = function() {
return beta.verb() ;

//Oxr:

return require("beta") .verb() ;

https://github.com/amdjs/amdjs-api/wiki/AMD

@ https://nicr.dev

https://github.com/amdjs/amdjs-api/wiki/AMD

2010: AMD

Asynchronously load dependencies that cannot be statically declared.

define (function (require) {
require(['il8n/' + lang], function (il8n) ({
// modules il8n is now available for use.
})
b

https://github.com/amdjs/amdjs-api/wiki/AMD

@ https://nicr.dev

https://github.com/amdjs/amdjs-api/wiki/AMD

2010: AMD

AMD supports plugins, to let developers customize how modules are resolved,
loaded and executed.

define (['text!../templates/start.html'], function (template) ({

//do something with the template text string.
b

@ https://nicr.dev

2015: ECMAScript Modules

@ https://nicr.dev

// math.js
export function sum() {
let s = 0;
for (let x of arguments) s =+ x;

return s;

// main.js
import { sum } from "./math.js";

console.log(sum(1l, 2, 3)); // 6

2015: ECMAScript Modules

Statically analyzable: runtimes can preload all the Like AMD!
necessary dependencies before executing the code

Minimal syntactic overhead (no boilerplate) Like Common]S!

Support for "named" and "default" exports
(no overlapping module. exports VS module.exports.name)

@ https://nicr.dev

2015: ECMAScript Modules

They are the result of multiple years of development, taking input from
different parties and exploring many possible designs and features.

@ https://nicr.dev

2015: ECMAScript Modules

They are the result of of development, taking input from
different parties and exploring many possible designs and features.

ECMA TC39 Working Group - Futures list, as of 1999.11.15

This list records the working group's current list of work items (major topics) for ECMA 262, 4th edition (E4), and beyond.

Provisionally agreed items for 4th Edition ‘

e Modularity enhancements: classes, types, modules, libraries, packages, etc.

¢ Internationalization (I18N) items: -
o Internationalization library [possibly as a separate ECMA technical report]
o Calendar

¢ Decimal arithmetic (enhanced or alternative Number object)

@ https://nicr.dev

15

https://archives.ecma-international.org/1999/TC39WG/991115-futures.htm

2015: ECMAScript Modules

They are the result of multiple years of development, taking input from
different parties and exploring

System.normalize = function(pask) {
if (/~text!/.test(mod)) {
return { normalized: mod.substring(5) + “.txt", metadata: { type: 'text' } };

Ony"> }

}
n sum

System.translate = function(src, { metadata }) {
)/' if (metadata.type === 'text') {

let escaped = escapeText(src);
return “export let data = "${escaped}"”;

}

~* __ I _ nana_ _I I _ _ ~_ T _ I * _ [Ry BRI R B & N [‘\f\/’O
Modules, Dave Herman, Sam Tobin-Hochstadt and Yehuda Katz, 2013

@ https://nicr.dev

16

http://archives.ecma-international.org/2009/TC39/tc39-2009-011.pdf
http://archives.ecma-international.org/2010/TC39/tc39-2010-017.pdf
http://archives.ecma-international.org/2013/misc/2013misc4.pdf

2045-2016: ECMAScript Modules

ECMAScript 2015 defined part of the ECMAScript Modules semantics. It was
justin 2016, with the HTML integration, that modules had been fully specified
and implementable.

O whatwg / html Q Type (/) to search

Author v Label v Reviews~ Checks~ Assighee~ Sort~

i~ Add <script type="module"> and module resolution/fetching/evaluation
#443 by ')domenic was merged on Jan 20, 2016 @ updated on Jan 3, 2018 I‘l To master

addition/proposal

@ https://nicr.dev -

https://github.com/whatwg/html/pull/443

2019: Dynamic import ()

Both CommonJS and AMD provided ways to dynamically require a module,
but this capability was missing from the initial ECMAScript Modules version.

import('il8n/' + lang) .then(function (il8n) ({
// modules il8n is now available for use.

)

// Since 2021, with top-level await

let il8n = await import('il8n/' + lang);

@ https://nicr.dev

Today

ECMAScript Modules are being used in production applications and as a
distribution format

Common]S and AMD are still widely used, both by legacy and new code

There is no clear migration path from Common]S/AMD to ECMAScript
Modules yet

@ https://nicr.dev

What's missing from ES Modules?

A way to synchronously import dependencies
only when they are actually needed.

// Supported by CommonJS!
exports.circ = function (radius) {

let PI = require("./heavy-computation-pi") ;

return 2 * PI * radius;

@ https://nicr.dev

What's missing from ES Modules?

A way to easily write multiple modules in a single file.

// Supported by AMD!

define ("pi", function () { return 3.14; });
define ("math", ["pi"], function (pi) ({

return {

circ: (radius) => 2 * pi * radius,

@ https://nicr.dev

What's missing from ES Modules?

A way to customize the module loading process.

// Supported by AMD!

define ("text!./doc.htm", function (docAsString) {
/] ...

b

@ https://nicr.dev

What's missing from ES Modules?

A way to properly support resources other than JavaScript.

e |SON
e WebAssembly

@ https://nicr.dev

@ https://nicr.dev

TC39: the JS standard committee

e TC39 designs the JavaScript language

e Made up of people from different companies, and the JS community

e Discusses and decides on new features through proposals

@ https://nicr.dev

Search...
TABLE OF CONTENTS
Introduction
1 Scope
2 Conformance
3 Normative References
4 Overview
5 Notational Conventions
6 ECMAScript Data Types and Values
7 Abstract Operations
8 Syntax-Directed Operations
9 Executable Code and Execution Cont...

10 Ordinary and Exotic Objects Behavio...

11 ECMAScript Language: Source Text
12 ECMAScript Language: Lexical Gra...
13 ECMAScript Language: Expressions
14 ECMAScript Language: Statements ...
15 ECMAScript Language: Functions a...
16 ECMAScript Language: Scripts and ...

17 Error Handling and Language Exten...

18 ECMAScript Standard Built-in Objects

ecma

About this Specification

The document at https:/ /tc39.es/ecma262/ is the most accurate
ECMAScript specification. It contains the content of the most rece
plus any finished proposals (those that have reached Stage 4 in th(

and thus are implemented in several implementations and will be

26

Modules Harmony

e The open design space around ECMAScript Modules is huge

e ECMAScript proposals are usually self-contained and developed in isolation
o Every proposal must be motivated on its own
o Every proposal must be complete on its own

e Cross-proposal coordination is necessary, to ensure that the evolution of
ECMAScript Modules remains consistent

@ https://nicr.dev

Modules Harmony

M. January 2023 TC39 meeting 8

@ https://nicr.dev

Problems with import assertions for module types and a possible general

Nicolo Ribaudo
solution + downgrade to Stage 2 (HTML issue, slides, slides for continuation)

Trrvry v oars \wrraes 7

len nresented. and does not indicate stace advancement

30m Import reflection update (slides) Luca Casonato, Guy Bedford

45m Import assertions/attributes for Stage 3 (new spec, diff, slides) Nicolo Ribaudo

. Guy Bedford & Luca
on update (slides, spec) Casorats
Luca Casonato & Guy

Source Phase Imports for stage 3 (slides, spec) Bedford

Module Harmony: interaction semantics of the different proposals
(slides)

Nicolo Ribaudo

28

les Harmony

A—> B means "A depends on B"

Dependencies

-~ P .
\ current division in proposals
”

~ -

Fetch/compile p
import source wal o

Statically analyzable syntax f < .~*"Concept of a "Module source" : {Concept of a "Module instance"y .*. Hech fiat is: fazf
WebAssembly .compileSti| 7 e (the Module object) 14) object that is lazily
import.meta.url))) [We . e .

This supports the full host reg

& proposal-import-reflecti¢

- ~

&’ ° ," .
Import source .~ % Compartments Layer0 _.- Import instance
., reflection.”” * 3 reflection
resolve -

/" Deferred import
.. evaluation

@ https://nicr.dev

The fcbure

@ https://nicr.dev

Modules proposals under development

Source phase imports Deferred import

TP G £ (aka Import Reflection) evaluation

Custom module
loading Module expressions Module declarations
(aka Compartments layer 0)

@ https://nicr.dev

Stage 3:

Import attributes

https://github.com/tc39/proposal-import-attributes

@ https://nicr.dev

https://github.com/tc39/proposal-import-attributes

Import attributes

"Parameters for the underlying module loader™

Please load the module }

import {

add,
} from "./

The JavaScriot "engine" (such as SpiderMonkey)
doesn't have any I/0O capabilities, and relies on a
wrapper "runtime" to communicate with the world.

@ https://nicr.dev

Import attributes

"Parameters for the underlying module loader"

Please load the module
./math.js Please load the file
https://x.com/math.js

mere itis!It's an

J S /Here itis! @

It has the these exports: application/javascript,
- add \ with these contents:
= sub

export let add =
And you can execute it (x, y) => x + y;
running this: e T o =

\\\7Evaluate() { ..}
\\\ (x, y) =>x - y;

@ https://nicr.dev

Import attributes

| want this "Parameters for the underlying module loader"

module do
be loaded as

a CSSfile...

Please load the module
. & ./main.css, the
import {

ol developer said that it
s es,

Y _ should have

} from "./ with { ° type: "css"

type: '"css"

};

@ https://nicr.dev

Import attributes

"Parameters for the ung means that it
should be a CSS
stylesheet...

Please load the module
./main.css, the developer

said that it should have Please load the
‘ https://x.com/main.css

ISP

Here it is! @ (Here itis! It's a text/css,
with these contents:

It has the these exports:
= styles .my-class {

color: red;

And you can execute it
running this:

Evaluate () { .. }
\ type/css: matches what |
i ted fi CSS stylesheet v
@ https://nicr.dev S O &1 25 SRlieHnEs

A\ Import assertions

A previous version of the proposal only allowed asserting that the loaded
module matched a given property:

import styles from "./main.css" assert { type: "css" };

While integrating this feature in browsers, we reailzed that "assert-only"
semantics didn't match what was needed so the proposal was changed:

import styles from "./main.css" with { type: "css" };

@ https://nicr.dev

Stage 2:
Source phase

iImports

https://github.com/tc39/proposal-import-reflection/

@ https://nicr.dev

https://github.com/tc39/proposal-import-reflection/

The phases of importing a module

globalThis: { .. } i

baseURL: =

@ https://nicr.dev

Resolve "https://x.com/mod.js"

|

Fetch / compile |smose (v xon »./acp 50)

export let x =1 + y;

L

R AttaCh context import { y } from "./ciep.js";m globalThis: { .. }

baseURL:
"https://x.com/mod. js"

export let x =1 + y;

L

Link
Load all the dependencies, and bind imports to exports

|

Evaluate Execute all the loaded modules, according to the
dependencies order, and expose the exported values

39

Source phase imports

Resolve Exposing a module at an earlier phase

L

Fetch / compile - import source modSource from "./mod";

L
Attach context

modSoure iS an object representing " . /mod"'s source,

o unlinked and without any execution context attached.
Link

L
Evaluate

@ https://nicr.dev

WebAssembly Modules integration

Using fetch Using source imports

\
const url = import.meta.resolve("./crypto.wasm") ; / import source cryptoM from "./crypto.wasm";

const responseP = fetch (url) ;

const cryptoM =

e Module is preloaded while loading all

await WebAssembly.compileStreaming (responseP) ;
o
the modules

cryptoM instanceof WebAssembly.Module; . .
Easily statically analyzable for bundlers

const cryptol = await

WebAssembly.instantiate (cryptoM, { Goes through the existing module
mathModule: { add: (x, y) => x + y },

b

const { md5 } = cryptoI.exports;

md5 ("Hello!") ;

loading content security policies (CSPs)

// > 952d2c56d0485958336747bcdd98590d

@ https://nicr.dev

WebAssembly Modules integration

Using source imports Fully abstracted

import source cryptoM from "./crypto.wasm"; / import { md5 } from "./crypto.wasm";

cryptoM instanceof WebAssembly.Module;
const cryptol = await WebAssembly.instantiate (cryptoM, ({ md5 ("Hello!") ;
mathModule: { add: (x, y) => x + y }, // > 952d2c56d0485958336747bcdd98590d

b
const { md5 } = cryptoI.exports;

md5 ("Hello!") ;
// > 952d2c56d0485958336747bcdd98590d

As simple as JS modules
e Manual linking boilerplate * imple as] u

. Generated Wasm modules must
e Works with any type of modules *

explicitly target the web
@ https://nicr.dev

Stage 1:
Deferred import

evaluation

https://github.com/tc39/proposal-defer-import-eval

@ https://nicr.dev

https://github.com/tc39/proposal-defer-import-eval

Deferred import evaluation

// ECMAScript Module

// CommondJS
exports.circ = function (radius) ({ export function circ(radius) {

let PI = require("./computed-pi") ; ? - 1eE/PI = import ("./computed-pi");
s - -
///
return 2 * PI * radius;

7

return 2 * PI * radius; /

| }

f
!
i
{

‘s async/await is "viral", it forces all the
callers to be asynchronous @

@ https://nicr.dev

Deferred import evaluation

Resolve Module loading must be asynchronous. Can we still avoid
some initialization cost?

L]
Fetch / compile

import defer * as mod from "./computed-pi.js"

L J export function circ(radius) ({
Attach context

return 2 * mod.PI * radius;

L

Link : : : .
— mod is an import namespace object that triggers
L the evaluation of the corresponding module only
Evaluate when accessing its exports.

@ https://nicr.dev

Blurring the line: top-level await

Resolve

L

Fetch / compile

L

Attach context

L

&

Ev

@ https://nicr.dev

.

N

// a.js
import defer * as b from "./b.js";

console.log("Eval A") ;

N

// b.js
import "./c.js";

console.log("Eval B") ;

// c.js
await aPromise;

console.log("Eval C") ;

Due to top-level await, some modules cannot be
evaluated synchronously.

Since c. js is asynchronous, its
evaluation cannot be
optimized await and it's
evaluated eagerly.

Later, when accessing
b.something, only b.js still
needs to be evaluated.

Stage 1:

Custom module

loading

https://github.com/tc39/proposal-compartments

@ https://nicr.dev

https://github.com/tc39/proposal-compartments/blob/master/0-module-and-module-source.md

Importing a module

Can we allow
hooking into this?V\I/

—-——
-—— -~

- N

Resolve

2 L
{ } Fetch / compile
Please load the file

https://x.com/math. js

L J
“Here it is! It's an Attach context

application/javascrip
It has the these exports: ' £, with these contents:
- add

- sub

Here it is! @

—— e e o o o o = o = - P

export let add =

And you can execute it (=, y) =>x +y;

running this: export let sub =
Evaluate () (x, y) =>x - y;

Evaluate

@ https://nicr.dev

Browsers: Service Workers

@ https://nicr.dev

Fetch / compile

&

The service worker receives the resolved URL...

Please load the file
https://x.com/math. ts

ﬁ-lere itis!It's an

application/javascript,
with these contents:

export let add =
(x, y) =>x+y;
export let sub =

(x, y) =>x - y;

... and returns the corresponding source.

Please load the file
https://x.com/math. ts

g /Here itis!'It's an

application/typescript,
with these contents:

export let add =
(x: num, y: num)

export let sub =

\\\\fx: num, y: num)

Browsers: Service Workers

// service-worker.js
addEventListener ("fetch", function (event) ({
if (event.request.url.endsWith(".ts")) {
event.respondWith (
fetch (event.request) . then (async response => ({
let { code } = await babel.transform(await response.text(), babelConfig) .code;
return new Response (code, {
headers: { ...response.headers, "content-type": "text/javascript" }
})
)
);
} else {

event.respondWith (fetch (event.request)) ;

@ https://nicr.dev https://developer.mozilla.org/en-US/docs/Web/APl/ServiceWorkerGlobalScope/fetch event

https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerGlobalScope/fetch_event

Node.js: --experimental-loader

Resolve
Please resolve . /math.ts tx, next) ({
from file:///proj/main.js

file:///proj/math.ts

YPIease load the file

file:///proj/math. ts
-

[It resolves to

Here it is! It's a module file, with
these contents:

/...
&
N

@ https://nicr.dev https://nodejs.org/api/esm.htmi#loaders

Fetch / compile

https://nodejs.org/api/esm.html#loaders

Proposal: custom module loading

new Module (source, {

async importHook (specifier) {

Please load the module
./math.js resolveURL (specifier));

' const /source = await @etchSource(url) ;
/Here it is! @

It has the these exports:
- add
= sub

And you can execute it
running this: Resolve Fetch / compile L Attach context

E a Uate .o

@ https://nicr.dev

Module and ModuleSource

import source wasmS from "./mod.wasm";

wasmS instanceof WebAssembly.Module;

import source jsS from "./mod.js";

jsS instanceof ?°?°?;

import module wasmM from

wasmM instanceof Module;
import module jsM from "./mod.js";

jsM instanceof Module;

await import(jsM) ;

@ https://nicr.dev

Resolve

L

AS

.
"./mod.wasm";

Fetch / compile

S

let source =
let source = new ModuleSource ("
import { x } from "dep";

console.log(x) ;

L]

Attach context

!

Link

!

Evaluate

N)

flet module = new Module (source, {

async importHook() { /* */ },
importMeta: { /* */ },
// Any other context

baseURL:
})

"https://...",

Lawait import (module) ;

WebAssembly.compile (bytes) ;

Stage 2:
Module

expressions

@ https://nicr.dev

Module expressions

Modules would now hava a You can create them with the ... Or with static syntax:
first-class representation in respective constructors:
the language (like functions):

fun instanceof Function; let fun = new Function(let fun = function (x) {
"x", return x + 1;
"return x + 1;"
) ;
let mod = module {
mod instanceof Module; let mod = new Module (export default 7;
new ModuleSource (°

export default 7;

@ https://nicr.dev

Module expressions

You can create them with the ... Or with static syntax: And you can later execute
respective constructors: them:

let fun = new Function (let fun = function (x) {

"x", return x + 1;

"return x + 1;"
) ;
let mod = module {

let mod = new Module (export default 7; await import (mod) ;

new ModuleSource (°
export default 7;
")
@ https://nicr.dev

Module expressions

You can create them with the ... Or with static syntax: Functions have a declaration
respective constructors: form:

let fun = new Function (let fun = function (x) { function fun (x) {

"x", return x + 1; return x + 1;

"return x + 1;"
)i
let mod = module {
let mod = new Module (export default 7;
new ModuleSource (°
export default 7;
")
@ https://nicr.dev

Module expressions use cases

Co-locating code to be executed in Improved ergonomics for custom loaders
different threads

import source modSource from "./my-file.js";
let worker = new Worker ("/modules-runner") ; // Mock access to the file system
worker .postMessage (module { async function importHook (specifier) ({
export default function () { i,f (specifier === "fs") {
I

// Do some expensive work! return module {}

} export const readFile =
});
worker.addEventListener ("message", ({ data })|=> {

console.log("Result", data + 2); return import (resolve (specifier)) ;

});

Logically linked code can
|iV€ in the same f||e import (new Module (modSource, { importHook }));

@ https://nicr.dev

Stage 2:
Module

declarations

@ https://nicr.dev

Module declarations

You can create them with the ... Or with static syntax: Functions and modules have
respective constructors: a declaration form:

let fun = new Function (let fun = function (x) { function fun (x) {

"x", return x + 1; return x + 1;

"return x + 1;" };
);
let mod = module { module Mod ({
let mod = new Module (export default 7; export default 7;

new ModuleSource (- };
export default 7;
)
@ https://nicr.dev

Bundling primitives in ECMAScript

What's missing from ES Modules?

A way to easily write multiple modules in a single file.

// Supported by AMD!

define("pi", function () { return 3.14; });

define("math", ["pi"], function (pi) {
return {
circ: (radius) => 2 * pi * radius,
}i
b

Y @NicoloRibaudo

@ https://nicr.dev

Module declarations

// bundle.amd.js // bundle.esm.js

.
- ~

» h
define ("pi", function () { module PI {

return 3.14; export default 3.14;

1N }

define("math", ["pi"], function (pi) ({ module Math ({ ’
7

import pi from PI;

4

return {

circ(radius) { export function circ(radius) ({

return 2 * pi * radius; return 2 * pi * radius;

@ https://nicr.dev

Module declarations

They can be imported, exported, nested, and passed around.

// vendor.bundle.js \:ii:§ // vendor.external.js

export module Preact from "https://example.com/preact@10.13.2";

export module lodash ({

module Internal { /* ... */ }

module Get {
import { something } from Internal; // main.js

export function get(obj, path) { /* ... */ }

}
export { get } from Get;

// ...

import { lodash } from "./vendor.bundle.js";

import { Preact } from "./vendor.external.js";

import { get, set } from lodash;

import { h } from Preact;

get({ a: 1 }, "a");

@ https://nicr.dev

Modules proposals under development

Source phase imports Deferred import

TP G £ (aka Import Reflection) evaluation

Custom module
loading Module expressions Module declarations
(aka Compartments layer 0)

@ https://nicr.dev

Whniaaﬂo‘fﬁiocomhg?

Some proposals are approaching their final shape,
but many are still in their exploration phase.

@ https://nicr.dev

