
Leo Balter, Sr. Product Manager
@leobalter
He/Him

Salesforce and the 
Web Platform



Salesforce <3 Open Web



LWC was introduced 
over 3 years ago



Over 22 million LWC 
components created



Why did we build LWC?



Every JavaScript developer 
can code on Salesforce

Enhanced productivity with web standards
Use the modern language of the web: ES6+, Custom 
Elements, classes, modules and imports

Engineered for performance 
More code executed by the browser instead of 
JavaScript abstractions for a blazing fast experience 

Compatible and easy to use
Runs side-by-side with existing Lightning components 
and can be composed with clicks or code

Lightning Web 
Components (LWC)

HTML CSS Javascript



Work with the web platform, 
not against it



Push the web forward 
for our Salesforce customers 

& their users



We do this together!



We do this together!



Addressing browser breaking changes

Tracking Browser Bugs

Testing early for responsible migration as 
standards become recommendations

Driving Salesforce innovation into the 
web platform

How do we work together?



Browser breaking 
changes



Browser breaking 
changes

● Over 400 cases created in one 
week

● “Reported By” over one 
thousand customers on Known 
Issue alert()/confirm()/prompt()



LWC: quick and effective migration plan:

window.alert('foo'); LightningAlert.open({

    message: 'foo',

    variant: 'headerless',

}).then((result) => {

    console.log('alert', result);

});



Lightning Base 
Components 
available today



Browser breaking 
changes
alert()/confirm()/prompt()



https://developer.salesforce.com/blogs/2022/01/preparing-your-components-for-the-
removal-of-alert-confirm-prompt 



Performance 
impact

○ Basic flows - such as tab switching went from sub-second to 
over 6 seconds

○ Targeted fixes to address the largest issues landed in 
Chrome 99 following Salesforce collaboration

○ Chromium team is working towards a complete long-term 
solution

When specific Accessibility Feature 
is enabled in Chromium 96



Tracking
Browser Bugs



● ✅ :host::part(foo) (chromium)

● ✅ :host::part(foo) (WebKit) 

● ✅ debugger statement is ignored in iframes removed from the document

● 🚨 Object.getOwnPropertyDescriptors causes window to delete itself in detached iframe

…

No more workarounds, please

https://bugs.chromium.org/p/chromium/issues/detail?id=980506
https://bugs.webkit.org/show_bug.cgi?id=232261
https://bugs.chromium.org/p/chromium/issues/detail?id=1015462
https://bugs.chromium.org/p/chromium/issues/detail?id=1305302


Report, track, and describe 
impact for bugs in
the Web Platform.



Testing early for 
responsible migration 
as standards become 
recommendations



Mixed Shadow mode Platform: Dev PreviewOSS

Shadow DOM support in 2017

 ✅ Yes ⚠ No  ⚠ Yes  🚨 No 🚨 No



Mixed Shadow mode Platform: Dev PreviewOSS

Synthetic Shadow DOM

Web Platform

LWC



Mixed Shadow mode Platform: Dev PreviewOSS

Shadow DOM support in 2017

 ✅ Yes ⚠ No  ⚠ Yes  🚨 No

Shadow DOM support in 2022

 🚨 No ✅ Yes  ✅ Yes ✅ Yes  ✅ Yes

 🚨 No

 🚨 No



Mixed Shadow mode Platform: Dev PreviewOSS

Shadow DOM support in 2017

 ✅ Yes ⚠ No  ⚠ Yes  🚨 No

Shadow DOM support in 2022

 🚨 No ✅ Yes  ✅ Yes ✅ Yes  ✅ Yes

 🚨 No

 🚨 No



Mixed Shadow mode Platform: Dev PreviewOSS

Synthetic Shadow DOM

Web Platform

LWC

Native Shadow 
DOM



Mixed Shadow mode Platform: Dev PreviewOSS

Synthetic 
Shadow DOM

Web Platform

LWC

Native Shadow DOM



Mixed Shadow mode
Enablement

Platform: Dev PreviewOSS

import { LightningElement } from 'lwc';

export default class extends LightningElement {
    static shadowSupportMode = 'any';
}

Indicates support for Native and 
synthetic shadow.

Native shadow DOM:

Synthetic shadow DOM:



Mixed Shadow mode
Differences between Native and Synthetic Shadow DOM

Platform: Dev PreviewOSS

No global style leakage (eg. loaded via static resources)

Subtle invocation timing changes of connectedCallback and 
disconnectedCallback

Minor changes in DOM APIs



● No compromise to Accessibility

● Web Standards Solutions

● AOM is not yet available

Native Shadow Compatibility Challenge

https://github.com/WICG/aom


Salesforce is working with Igalia to ship ID 
Ref and Cross-root ARIA delegation

Enable adoption of
Native Shadow DOM



Driving Salesforce 
innovation into the 
web platform



ShadowRealms

A new way of evaluating code at 
runtime within its own JavaScript 
global scope.

It's a lightweight, smart, and clean 
alternative for iframes.



A platform web application is 
composed by multiple components 
and parts from different origins.

Extensible Web 
Applications



The fundamental platform parts 
reused across the customers.

Salesforce 
Components



Tailored directly by the customers and 
composed with content specific to 
their needs.

Custom 
Components



Customers can take advantage of 
extensions for their specific contents 
and benefit.

AppExchange 
Components



LWS ensures integrity and security to 
the Platform in real time.

ShadowRealms empowers this 
ensurance at much faster fashion!

Improved Integrity 
and Security



Salesforce is sponsoring Igalia to ship 
ShadowRealms in Web Browsers.

Driving the Web 
Standards Forward



Up to 13x faster on initialization!



Up to 8x faster using LWS' 
membranes framework



In the spirit of pushing the web 
forward…



LWC IE11 Support 
Ends Jan 1, 2023 
(Spring ‘23 Release)



We are not browser 
implementers, but we are part 

of the open web.

It's also our responsibility to 
move the web forward!



 Thank You


