Modernizing
Internationalization in Gecko
and SpiderMonkey

Daniel Minor
SpiderMonkey / Mozilla

Overview

e \What is internationalization?

e Deep Dive: Text Segmentation

e Localization in the browser

e How is all of this implemented?

e Experimenting with ICU4X in Firefox
e [ICU4X Text Segmentation

What is Internationalization?

What is Internationalization?

e Part of a group of related ideas

o Internationalization (i18n)
o Translation

o Localization (110n)

e |et’s talk about translation first

Translation

Language and Appearance
Fonts and Colors
Default font Default (Times) Advanced...

Colors...

Zoom
Default zoom 100% v

Zoom text only

Translation

7AVhERE
BREDO7A> b~ BEE (Times)

=L
BEDX—L 100%
XFY A RDHEE
AT9T s sufeafa
Wi TG

qALET Hive FAYT (Times)

LS
qagETyE 100% v

Zoom text only

el y 3l
IR § b glasl

(Times) @iall dudl Lall

Idioma y apariencia
Tipografias y colores
Tipografia predeterminada Predeterminad... v Tamafio 16 v Avanzadas...

Colores...

Ampliacién
Ampliacién predeterminada 100% v

Sélo ampliar texto

Language and Appearance

Fonts and Colors
Default font Default (Times) Advanced...

Colors...

Zoom

Default zoom 100%

Zoom text only

28, Eraden

FrocSy & Sothen

©Hebadh ot wPADo (Times)

Zoom
Default zoom 100% v

Frorgdy S 0 Box

960 o ngmboby

IMm0BHIO0 ©d BIMYd0
3 b gfhggs 6

230 (Times)

DM
6o39mabbdggn dBmds 100% v

Bbmmme HadbHob dmds

~.DTEN

..owax

AMeasansusilsIng

unusnesuazi

wuuUShuTENRY @SN (Times)

o
quidndu 100%

guipaMuiIniy

©080005007...

860

naxnI Now

D'yayi 01913

(Times) YT myma 7700 71 (o

100%

naxnn gnnn
7700 N2 navnn nan

Ta%2 voL A

Localization

e Translation + Cultural Adaptation
e Appropriate use of colours, symbols, images, etc.

e E.g. Bug 615495 - Hide nurse when locale is 'ja’

o Around 12 years ago Mozilla support site redesign featured a cartoon cat nurse

o In Japanese culture, this had unintended erotic connotations

\rewi "4

https://bugzilla.mozilla.org/show_bug.cgi?id=615495

Internationalization

e Internationalization consists of all the things that can be done by computer
o E.g. Dates, times, currency formatting

e Internationalization enables localization
o Less work for translators

e Data driven

o CLDR - Common Locale Data Repository
o XML and json

o Unicode Technical Report #35 defines the schema and interpretation of this data

Internationalization Examples

Numbering systems

1,2,3,4, ..

Z’Y‘,Y 7\ ’.

Number groupings

133,000.00

1,33,000.00

Date & Time

June 5, 2022 at 4:46:55 PM

202246 HA5H 16:46:41

Calendar systems

Tuesday, January 12, 2021

28 Tevet 5781

Text segmentation

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.

fuwnsEnseludasy leavsall
ANRINNINATILTILNSFINI

Directionality

Liked by John and two more people.

Liked by <=5 and two more
people.

Lists Mary, Nick and Liam Mary, Nick LOMMILD Liam
Plural Rules one, other zero, one, two, few, many, other
Currencies $123.45 123.45 $US, $1YY,¥0

ECMA-402: Internationalization in JavaScript

e Set of APIs that implement internationalization in JavaScript
e Create a formatter by specifying a locale and some options
e And the formatter provides a format() method to do the work

const number = 123456.789;

new Intl.NumberFormat('de-DE', { style: 'currency', currency: 'EUR' }).format(number);

new Intl.NumberFormat('ja-JP', { style: 'currency', currency: 'JPY' }).format(number);

new Intl.NumberFormat('en-IN', { maximumSignificantDigits: 3 }).format(number);

Why Localization and Internationalization?

e For Mozilla, it's part of our manifesto, “The internet is a global public resource
that must remain open and accessible”
e An English only web is neither open nor accessible

o nor Chinese, Spanish, Arabic, etc.

Why Localization and Internationalization?

e Ensure that people are able to access the web in their own languages
o Localize the browser

e Provide people with the tools they need to localize the web
o ECMA-402 support in JavaScript

Deep Dive: Text Segmentation

Text Segmentation

e The process of chunking text into meaningful units

o On character boundaries
o On word boundaries

m E.g. jump to the next word or sentence in a text editor
o On line boundaries

m E.g. for word wrapping text in a column

Grapheme Breaking: Code Points vs. Graphemes

e Graphemes are what are rendered to the screen

(@)

e C(Code points encode characters

e Not necessarily a 1:1 mapping from code points to graphemes

O ds U+1F44D THUMBS UP SIGN

o U+1F3FE EMOJI MODIFIER FITZPATRICK TYPE-5

Segmentation - Grapheme breaking

var string = "thumbs @&
// 'thumbs &8 up'

[...s.segment(string)].map(s => s.segment)

B IEY [, YR, i

[...string]
12y e, TR,

I/

Segmentation - Word breaking

e Break on word boundaries

e Complexity depends upon the language

o Alot easier when there’s spaces between words

o More complicated for Asian languages

Word Breaking - Spanish

Es tan corto el amor, y es tan largo el olvido.

Word Breaking - Spanish

[Esl/tan/corto/ellamor,|yles|/tan/largo/el/olvidd.|

Word Breaking - Japanese

DAY BERVIATL KOF

Word Breaking - Japanese

A BEROGAT] [KDE

Intl.Segmenter

e Stage 4 Proposal for ECMA-402

o Already implemented in Chromium and Safari

e Use case: implementing text editors in JavaScript, etc.
e Current proposal includes grapheme, word and sentence breaking

e But not line breaking:

o Line breaking is part of a v2 of the proposal

o To do it properly, need information on text size and position, not just break locations

Intl.Segmenter Example

> // Create a locale-specific word segmenter
let segmenter = new Intl.Segmenter("ja", {granularity: "word"});

Intl.Segmenter Example

> // Create a locale-specific word segmenter
let segmenter = new Intl.Segmenter("ja", {granularity: "word"});

// Use it to get an iterator for a string
let input = "Hi® ERVIAL KOF";
let segments = segmenter.segment(input);

Intl.Segmenter Example

// Create a locale-specific word segmenter
let segmenter = new Intl.Segmenter("ja", {granularity: "word"});

// Use it to get an iterator for a string
let input = "Hi® ERVIAL KOF";
let segments = segmenter.segment(input);

// Use that for segmentation!

for (let {segment, index, isWordLike} of segments) {
console.log("segment at code units [%d, %d): «%s»%s",

index, index + segment.length,

segment,

isWordLike ? " (word-like)"

Y

}

Intl.Segmenter Example

// Create a locale-specific word segmenter
let segmenter = new Intl.Segmenter("ja", {granularity: "word"});

// Use it to get an iterator for a string
let input = "Hi® ERVIAL KOF";
let segments = segmenter.segment(input);

// Use that for segmentation!

for (let {segment, index, isWordLike} of segments) {
console.log("segment at code units [%d, %d): «%s»%s",

index, index + segment.length,

segment,

isWordLike ? " (word-like)"

Y

}

segment at code units [0, : «hl» (word-like)
segment at code units [2, i «P» (word-like)

segment at code units [3, P& »

segment at code units [4, : «kE» (word-like)
segment at code units [5, : «FRIAD» (word-like)

segment at code units [9, 10): « »

segment at code units [10, 11): «7K» (word-like)
segment at code units [11, 12): «®» (word-like)
segment at code units [12, 13): «&» (word-like)

undefined

Localization in the Browser

Localization in the Browser

e ECMA-402 allows developers to use JavaScript to localize the web

e But the browser is also a product that needs to be localized!

We ship 133 Locales in Firefox!

Acehnese

Acholi

Afrikaans
Albanian

Arabic
Aragonese
Armenian
Armenian Classic
Armenian Eastern
Arpitan
Assamese
Asturian
Azerbaijani
Basque
Belarusian
Bengali

Bodo

Bosnian

Breton

Bulgarian
Burmese
Catalan

Catalan (Valencian)
Central Kurdish
Chinese (China)
Chinese (Taiwan)
Chinyanja
Crimean Tatar
Croatian

Czech

Danish

Dutch

English (Canada)

Esperanto
Estonian
Finnish
French
Frisian
Friulian
Fulah

Icelandic
lloko
Indonesian
Interlingua
Irish

Italian

Ixil

Gaelic, Scottish Japanese

Galician
Georgian
German
Greek
Guarani
Guijarati
Hebrew
Hindi

English (Great Britain) Hungarian

Kabyle
Kannada
Kagchikel
Kashmiri
Kazakh
Khmer
Kichwa
Korean
Lao

Latgalian
Latvian

Ligurian
Lithuanian
Luganda
Luxembourgish
Macedonian
Maithili

Malay
Malayalam
Manx

Marathi
Miahuatlan Zapotec
Mixteco Yucuhiti
Mixtepec Mixtec
Nahuat Pipil
Nepali

Norwegian Bokmal
Norwegian Nynorsk
Occitan

Odia

Pai pai

Persian

Polish

Portuguese (Brazil)

Portuguese (Portugal)

Punjabi
Purépecha
Quechua Chanka
Romanian
Romansh
Russian

Santali (Ol Chiki)
Sardinian

Scots

Serbian

Sicilian
Silesian
Sinhala

Slovak
Slovenian
Songhay
Sorbian, Lower
Sorbian, Upper

Tajik
Tamil
Telugu
Thai
Tibetan
Triqui
Turkish
Ukrainian
Urdu
Uzbek

Spanish (Argentina) Viethamese

Spanish (Chile)
Spanish (Mexico)
Spanish (Spain)

Swahili
Swedish
Tagalog

Welsh
Wolof
Xhosa

Project Fluent

How we localize Firefox

A localization system for natural-sounding

translations

(@)

(@)

Developers can write in English
Translators can produce appropriate translations for more

grammatically complicated languages :)

hello-user = Hello, {$SuserName}!

shared-photos =
{$userName} {$photoCount ->
[one] added a new photo
*[other] added {$photoCount} new photos
} to {$userGender ->
[male] his stream
[female] her stream
*[other] their stream

Io

SuserName Anne

SuserGender male
female
® unspecified

$photoCount .

Hello, Anne!

Anne added 3 new photos to their stream.

Fluent for developers

e Developers write define the properties in English in text files
e Can be localized declaratively through the DOM using attributes

e Or programmatically through a JavaScript API

Variables:

$count (Number) - Number of tracking events blocked.

$earliestDate (Number) - Unix timestamp in ms, representing a date. The
earliest date recorded in the database.

graph-total-tracker-summary =

{ $count ->
[one] { $count } tracker blocked since { DATETIME($earliestDate, day: "numeric", month: "long", year: "numeric") }
*[other] { $count } trackers blocked since { DATETIME($earliestDate, day: "numeric", month: "long", year: "numeric") }

}

Fluent for translators: Pontoon

IFI | Teams Projects Contributors Machinery

Localize Mozilla

If you want to make Firefox available in your language, join a global community of localizers
from all over the world, track progress of various Mozilla localization projects, and more,

Pontoon is there for you.

et o

Translating a string in Fluent

e Ul Presents English source text

e Allows translator to edit target language text
o Notice that there are more pluralizations in Lithuanian than in English

REQUEST CONTEXT or REPORT ISSUE

one { $count } tracker blocked since { DATETIME($earliestDate, day: "numeric", month: "long",

year: "numeric") }

other { $count } trackers blocked since { DATETIME($earliestDate, day: "numeric", month: "long",

year: "numeric") }
Variables: $count (Number) - Number of tracking events blocked. $earliestDate (Number) - Unix timestamp in ms, representing a date. The earliest date

recorded in the database.

e e e e

uo { DATETIME($earliestDate, day: "numeric", month: "long", year: "numeric") } buvo uzblokuotas y

one (e.g. 1)

few (e.g. 2) Nuo { DATETIME($earliestDate, day: "numeric", month: "long", year: "numeric") } buvo uzblokuoti {%

Nuo { DATETIME($earliestDate, day: "numeric", month: "long", year: "numeric") } buvo uzblokuota {//;

other (e.g. 0)

Internationalization in Fluent

e Fluent needs to localize numbers and
dates too!

e Built-in functions NUMBER,
DATETIME to handle this

e Based on ECMA-402 APls

DATETIME

Formats a date to a string in a given locale.

Example:

today-is = Today is { DATETIME($date,

Parameters:

hour12

weekday

year
month
day
hour
minute
second

timeZoneName

Developer parameters:

timeZone

See the Intl.DateTimeFormat for the description of the parameters.

How is this all Implemented?

ICU4C

e International Components for Unicode for C (ICU4C)

o Also an ICU4J for Java
o And an ICU4X that we'll discuss later

e Enormous C (and C++) i18n library, first released in 1999

e Used everywhere!

o Implement internationalization in SpiderMonkey and Gecko
o And in Chromium, WebKit, etc.
o Andin OS X, Linux, Adobe products, etc. etc.

ICU4C

e Provides a lot of functionality

e But it's monolithic

o Very hard to remove code or data that you don’t use

o Large dependency for browsers
e API mismatch with ECMA-402

o Lots of work setting up calls, handling options and converting results

Unifying Firefox’s Internationalization Code

e At the beginning of 2021 Firefox effectively had three i18n implementations:

o One in SpiderMonkey
o One in Fluent

o And one in Gecko
e |CUA4C calls scattered throughout the code base
o Lots of code duplication to handle parameters and return values
e No guarantee of consistent results between SpiderMonkey and Gecko

o e.g. using different options when formatting numbers and dates in SpiderMonkey and in Fluent

Unifying Firefox’s Internationalization Code

e Moved all ICU calls to a single library usable from SpiderMonkey and Gecko
e Developed interfaces based on ECMA-402

o Hide ICU4C complexity from developers
o Get rid of duplicated code

o Make sure we're consistent when calling into ICU APls
e [argely used existing SpiderMonkey code

o SpiderMonkey code well tested, thanks to test262

Unification Results

e (ot rid of a lot of duplicated code
e Had almost no regressions while doing so
e Full set of ECMA-402 APls are now available to localize the browser

e And we can easily experiment with other internationalization libraries

Experimenting with ICU4X in Firefox

ICU4X Project

e Reimplementation of ICU4C designed around the needs of the web

o Smaller, faster
o Data is not monolithic
o APls based on ECMA-402

e Initial implementation in Rust, support for other languages through FFl

e Under development by Google and Mozilla since 2020

o 1.0 Release planned for end of June 2022

Experimenting with ICU4X in Firefox

e In June 2021, ran experiments using ICU4X in SpiderMonkey
o Int.NumberFormat
o Intl.DateTimeFormat
o Intl.PluralRules

o Intl.Locale

e Looked at performance, memory use and correctness

Intl.DateTimeFormat Performance

Profiled Format and Calendar Operations
C lated time (ms

B Calendar Operations [Format

Intl.Date TimeFormat Memory Use

DateTimeFormat - Heap Memory Usage

125

Correctness

e Ran correctness tests using Test-262 for:

o Intl.Locale

o Intl.PluralRules

e Other implementations were not complete enough for results to be meaningful

e Handful of failures

o Mostly around locale canonicalization

Some Unexpected Results

e Int.NumberFormat memory use was worse with ICU4X!
o 78.0 MB with ICU4X vs. 21.3 MB with ICU4C

e Smaller ICU4X objects meant less frequent Garbage Collection

o ICU4X

o ICU4C: | |
e This was a side- effect of the mtegratlon with Sp|derMonkey

o Need to estimate object size for Unicode objects in SpiderMonkey

o But this estimate affects the behaviour of the garbage collector
o Not an ICU4X issue :)

Overall Results

e In general performance and memory use are much better

e But need to be cautious

o Incomplete implementations of DateTimeFormat and NumberFormat
o Integration was a little hacky

o It would be interesting to benchmark again after ICU4X 1.0
e [CU4X was promising enough to continue our development

o Collator
o DateTimeFormat

o Segmenter

ICU4X Text Segmentation

Using ICU4X for Segmentation in Firefox

e [CUA4C is not suitable for Firefox segmentation

e Layout engine does not use ICU4C for segmentation in the browser

o Need to adjust line breaking results according to CSS properties
o ICU4C data size is too large, because each word-break and line-break combination requires

its own data set.

e Using ICU4C for Intl.Segmenter but not layout would mean inconsistent

results

o Exactly what we wanted to avoid with our unification project

Using ICU4X for Segmentation in Firefox

e Segmentation is also a great use case for experimenting with ICU4X

o Not just a faster version of ICU4C

o Does something we can’t currently do with ICU4C
e Will give us consistent segmentation:

o Across platforms
m Our Layout implementation is platform specific

o And between Layout and SpiderMonkey

Implementing Segmentation in ICU4X

e Rule based
o Algorithm determines whether a character is a break
o UAX#14: Unicode Line Breaking Algorithm
o UAX#29: Unicode Text Segmentation
e Dictionary based
o Look up codepoint in a trie to determine where to break
o Used for Asian languages
e Neural network models

o LSTM models trained on dictionaries
o Space/Time tradeoff: slower, but require less storage

Integrating the ICU4X Segmenter

e Will start after ICU4X 1.0 Release
e Already refactored existing Layout code to have an ECMA-402 like interface
e API surface is small

e But need to figure out how to handle data packaging in Firefox

o Something we didn’t try in our earlier experiments

Experimenting with the ICU4X Segmenter

e \Write microbenchmarks for word and line breaking
e Analyze impact on code and data size

e Enable for Linux Nightly builds

o Behind a preference
o Linux segmentation is currently the least functional, so the lowest risk for us

o Check for regressions, performance problems, etc.

Implementing Intl.Segmenter

e Start once we're happy with the ICU4X integration
e Should be straightforward

o Have a work-in-progress implementation using ICU4C for an older version of the spec

e \alidate against Test-262

Conclusions

e Internationalization is important for the browser and in JavaScript
e By unifying our implementation, we’ve simplified our code base significantly
e \We also set ourselves up to try out new implementations

e Because of this work, we can easily try ICU4X for text segmentation

Questions?

