. Web E-né'ihes Hackfest 2021
May 6th, 2021

Record & Tuple | o
Immutable data structures in JS? | 3
Mo e o

®

Q

Rick Button
JavaScript Infrastructure Engineer
- TC39 Delegate.

- . . -

K "-"I;é:cl"nAtBIoomberg.com

© 2021 Bloomberg Finance L.P. All rights reserved.

Bloomberg

Record Syntax

const record = #{
name :
stage: 2,

'

Bloomberg

Tuple Syntax

const tuple =

Bloomberg

Nested structures

const proposals = #]

#{

name :
stage: 2, },
name :

stage: 1, },

Bloomberg

Immutability

rt.name =

Bloomberg

Deep immutability

proposals[0].name =

Bloomberg
Engincering

Deep immutability / Object.freeze?

config = {
db: { driver:
host:

'

Object.freeze(config) ;

initDrivers(config) ;
assert(config.db.host ===

Bloomberg

Deep immutability / Defensive cloning

config = {
db: { driver:
host:

'

initConfig =

JSON .parse(JSON.stringify(config)) ;
initDrivers(initConfig) ;
assert(config.db.host

Bloomberg
Engincering

Deep immutability / No cloning, no changes!

const config = #{
db: #{ driver:
host:

'

await initDrivers(initConfig) ;
assert(config.db.host ===)

Bloomberg

Deep immutability / No objects in R&T!

const config = #{
db: { driver:

host:

Bloomberg

Deep immutability / Boxes: explicit interior identity

const config = #{ I Functions have identity!
db: #{
driver:
host:

)

onConnect: Box(() => {

A,
}
'

config.db.onConnect.unbox() () ;

Bloomberg
Engincering

Equality

Bloomberg

Engineering

Equality / Identity

const srcPath =
const distPath =

assert(srcPat
assert(srcPat

h
h

! distPath) ;
|

)

Bloomberg
Engincering

Equality / Identity-less-ness

const srcPath
const distPath

assert(srcPat

assert(srcPat

Bloomberg

Equality / Indexing by identity

const utilPath =)

const sourceMapping = new Map();

sourceMapping.set(| :

[,
sourceMapping.set([utilPath, |

sourceMapping.get(utilPath) ;

sourceMapping.get (|

Bloomberg
Engincering

Equality / Indexing by value

sourceMapping =
sourceMapping.set(#|
#]
sourceMapping.set(#|
#]

sourceMapping.get(#|

Bloomberg
e,

Update by copy

const root = #|
const rel = #]

const abs =

Bloomberg

Update by copy / Spread

= #[...root, ...rell;

Bloomberg

Update by copy / New Methods

const abs root.pushed(

const rev = abs.reversed();

Bloomberg

Bloomberg

Engineering

.com

TechAtBloomberg

© 2021 Bloomberg Finance L.P. All rights reserved.

1

2

TC39 / The Stage Process

Stage 0: Proposals are ideas
Stage 1: The committee is interested by the proposed idea
Stage 2: The committee intends to specify the proposal Record & Tuple

Stage 3: The proposal has a spec and should land in the
language with minor changes

Stage 4: The proposal is implemented in major browsers
and will ship in the next yearly specification

» KO e Nl
2 F LI ol

Record & Tuple Status

L4 Spec Text Draft

.4 Babel Syntax Parser
.4 Babel Syntax Transform
L4 Polyfill

774 Tuple toy implementation in SpiderMonkey (Firefox)
by Nicolo Ribaudo (Babel Maintainer Team)

} i Wl
el L o

Record & Tuple Status / Open for experimentation!

 Experimentation is encouraged
* Production use is not advised

« Things will change in the future thanks to experimentation

Record & Tuple Playground

https://rickbutton.qgithub.io/record-tuple-pl round/

https://rickbutton.github.io/record-tuple-playground/

Resources

Proposal https://github.com/tc39/proposal-record-tuple

Spec text https://tc39.es/proposal-record-tuple/

Playground | https://rickbutton.qithub.io/record-tuple-playground/

TechAtBloomberg.com Bloomberg

© 2021 Bloomberg Finance L.P. All rights reserved. - .
Engineering

25

https://github.com/tc39/proposal-record-tuple
https://tc39.es/proposal-record-tuple/
https://rickbutton.github.io/record-tuple-playground/

Performance

Comparison semantics are linear time, but there are some
strategies for improving comparison performance in-engine, for
example:

Interning - only one “engine value” for a given “language value”:
« Comparison results in a quick pointer check
« Can be performed at construction time or comparison time

Performance /| Complications?

Only some constructed records/tuples will be compared

Records/Tuples containing -0 require additional overhead or

fallback to linear time (performance cliffs!)
— 0===0, #[-0] === #[0]

In theory, most Record/Tuple comparisons are between
small values (Map keys/Set values)

Performance / Linear Time Comparison?
* Less implementation complexity

— No need to worry about whether to / when to intern
— No need to handle -0/+0 complexity

« More performance consistency

» Matches existing linear time comparison expectation for
userland deep equality

» Keeps the door open for future optimizations as
Record/Tuple is observed in the wild

W (@rickbutton
¢® @rickbutton

Bloomberg Engineering L]

¥ @TechAtBloomberg

¢ @bloomberg
TechAtBloomberg.com (1]
https://careers.bloomberg.com/job/search?fd=Engineering

TechAtBloomberg.com Bloomberg

© 2021 Bloomberg Finance L.P. All rights reserved. - .
Engineering

29

https://twitter.com/rickbutton
https://github.com/rickbutton
https://twitter.com/TechAtBloomberg/
https://github.com/bloomberg/
https://www.techatbloomberg.com/
https://careers.bloomberg.com/job/search?fd=Engineering

