
Kiosk-mode browser using Chromium 
Embedded Framework (CEF)

Zakhar Voit (zvoit@igalia.com)
Web Engines Hackfest 2021

mailto:zvoit@igalia.com


CEF Overview
● Based on Chromium.
● Suitable for adding web experience to an existing application or building a 

new Chromium-based browser from scratch.
● Is built as a set of libraries which provide an interface to access a big subset 

of browser’s features.
● Uses Chromium’s multi-process model and sandboxing, provides an IPC API 

to send messages between processes.
● Provides default behavior for most features, so you only need to change what 

you use.
● CEF is a C++ library, but a lot of alternative language bindings are available.



Customer’s feature requests
● Terminals are running Windows in kiosk-mode.
● Fullscreen browser experience with no tabs, operating system runs the 

browser exclusively.
● Filesystem access (file upload or download) is disabled.
● PDFs and spreadsheets are opened read-only in popup windows.
● Some preloaded JS code (extensions) is needed for the customer’s websites 

(logging, keybindings).



Customer’s feature requests
● Only webcams and microphones whitelisted by the administrator are available 

and are selected automatically.
● Support several custom URL schemes (like chrome://)
● Custom web pages for HTTP errors.
● Windows printing dialog is used instead of Chromium one, printers are 

pre-configured to use the correct settings.



How CEF helps us
● Overriding web request’s behavior.
● Custom URL schemes (like chrome://).
● Callbacks for when the user tries to upload or download a file.
● Subset of Chromium’s views framework for window management.
● Common Chromium features like logging, locales, proxy support and remote 

web pages debugging.
● Standard library to work strings, processes, threads, reference counting, etc. 

(similar but not the same as Chromium’s base).



JavaScript
● Any JavaScript code can be executed from C++ in the “render” process of any 

page.
● CEF provides C++ wrappers around Chromium’s V8 objects for using C++ 

implementation for JS functions.
● A simple extension system is provided, you have to implement the extension 

APIs that you need and a mechanism for loading extensions code. Not 
compatible with Chrome extensions.

● JavaScript bindings can be asynchronous.



Size and performance
● RAM usage with a single Google homepage is ~70MB on a virtual machine 

with 500MB available.
● A Windows installer including the browser and required libraries is ~60MB.
● CPU usage is similar to Chromium.



Updating CEF
● CEF is tracking Chromium releases.
● APIs are stable.
● More bugs are fixed than introduced (subjectively).



First Impressions
● Easy to set up and get started both on Windows and Linux.
● Documentation, community and CEF source code are great!
● CEF bugs are rare but Chromium bugs are still there.
● Never had to change CEF source code or send patches.



Links and resources
● CEF's repository on Bitbucket
● CEF Forum

https://bitbucket.org/chromiumembedded/cef/src
https://magpcss.org/ceforum/

