
Irreducible Control Flow
in WebAssembly

Web Engines Hackfest

Conrad Watt

This talk

● What is irreducible control flow?

● Why do we care that WebAssembly can’t directly express it?

● How would we extend WebAssembly?

What is reducible control flow

● Exactly the (intra-function) control flow that is directly expressible
using blocks, loops, conditionals, and labelled break/continue.

● Programs/languages using only these constructs are called
“semi-structured” (e.g. Java, JavaScript).

What is reducible control flow

● Formally characterised by conditions on the control flow graph:
● Can partition all edges into “forward” and “backward” sets s.t.

○ Forward edges form a rooted DAG
○ For all backward edges (A,B), node B dominates node A

● Defines where the “loops” are in the CFG, and restricts all loops to be
single-entry

What is irreducible control flow

● Everything else

● Programs with fancy uses of goto which cannot be directly expressed
using semi-structured control constructs

● Can be characterised in terms of the existence of multi-entry loops in
the CFG

(a) reducible control flow
 if-else (structured)

JMP EAX (remix), CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

(b) reducible control flow
 simple loop (structured)

(c) reducible control flow
 loop with break

(semi-structured)

JMP EAX (remix), CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

(d) irreducible control flow
 goto into middle of loop body
 (unstructured)

Limitations for Wasm

● Wasm only has semi-structured control flow constructs
(block, loop, if, br)

● Therefore, can only be directly targeted by CFGs which are reducible

● When compiling a program with irreducible control flow, need to use
an inefficient indirection

Limitations for Wasm

…

goto a; // x

…

goto b; // y

…

goto c; // z

a:

while(true) {

 …

 b:

 …

 c:

 …

}

Limitations for Wasm

…

goto a; // x

…

goto b; // y

…

goto c; // z

a: …

b: …

c: …

goto a;

Limitations for Wasm

Limitations for Wasm

…

goto a; // x

…

goto b; // y

…

goto c; // z

a: …

b: …

c: …

goto a;

…

dispatch = 0;

goto d; // x

…

dispatch = 1;

goto d; // y

…

dispatch = 2;

goto d; // z

d:

switch (dispatch) {

 case == 0: goto a;

 case == 1: goto b;

 case == 2: goto c; }

a: …

b: …

c: …

dispatch = 0;

goto d;

State of the world

● Most real user programs inherently have reducible control flow,
even if they use goto
○ e.g. “goto finalize” is fine - no indirections needed

● Irreducible control flow can appear as a result of
○ Hyper-hand-optimised code (e.g. in a standard library)
○ Implementing async/resumable functions with green threads

(e.g. Goroutines)
○ Compiler IR optimisations, even of semi-structured code

State of the toolchain art

● Three state-of-the-art implementations

○ LLVM FixIrreducibleControlFlow + CFGStackify

○ Cheerp Stackifier
■ Good rundown blogpost here:

“Solving the structured control flow problem once and for all”
https://medium.com/leaningtech/solving-the-structured-control-flow-problem-once-and-for-all-5123117b1ee2

○ Binaryen Relooper (with 2016 control stack optimisations)

https://medium.com/leaningtech/solving-the-structured-control-flow-problem-once-and-for-all-5123117b1ee2

Why would we want irreducible CF?

● Producer ergonomics
○ Having to implement CFG transformation/Wasmification is a major

speed bump

● Programs with lots of irreducible control flow might be inefficient
○ Current approaches make irreducible control flow relatively

“pay-as-you-go”

How would we add irreducible CF?

● Constraints:
○ One-pass validation and codegen
○ Must compose with existing control flow operations
○ Engines must be able to optimise

● The funclets proposal was a first draft of this
(https://github.com/WebAssembly/funclets/blob/master/proposals/funclets/Overview.md)

https://github.com/WebAssembly/funclets/blob/master/proposals/funclets/Overview.md

multiloop - iterating on funclets

● Within the body of a regular Wasm loop, you can jump back to the
start of the body using br.
○ Works like a higher-level language’s continue (semi-structured).

● multiloop - a loop with multiple bodies. Within any body, you can
jump to the start of any body using br.
○ To enable one pass validation and compilation, in general the type

signatures of all bodies must be forward declared before the code
of any body.

multiloop

Abstract syntax:

multiloop tf n (e* end)n

Forgetting exceptions for a second, any function CFG can be represented
as a single multiloop with one body for each basic block.

There is a decent amount of subtlety around exception handling

multiloop

Abstract syntax:

multiloop tf n (e* end)n

Bikeshedding (not necessarily for now):

● Efficient body type declarations (e.g. in the binary format)

● Should bodies have fallthrough semantics?
(I’d argue yes)

● Unifying loop, block, and multiloop in the formal semantics

Composition with existing control flow

● Multiloops can be arbitrarily nested within each-other, and within
regular block and loop constructs.

● To calculate the br index, count through each multiloop body in
turn.

Composition with existing control flow
For each k = n, where does the inner (br k) target?

loop ([]->[]) k = 3:

multiloop ([]->[]), ([]->[])

k = 1: <multiloop first body>

end

k = 2: (block ([]->[]) (br k) ... end k = 0:)

end

end

Composition with existing control flow
For each k = n, where does the inner (br k) target?

loop ([]->[]) k = 3:

multiloop ([]->[]), ([]->[])

k = 1: <multiloop first body>

end

k = 2: (block ([]->[]) (br k) ... end k = 0:)

end

end

Composition with existing control flow
For each k = n, where does the inner (br k) target?

loop ([]->[]) k = 3:

multiloop ([]->[]), ([]->[])

k = 1: <multiloop first body>

end

k = 2: (block ([]->[]) (br k) ... end k = 0:)

end

end

Composition with existing control flow
For each k = n, where does the inner (br k) target?

loop ([]->[]) k = 3:

multiloop ([]->[]), ([]->[])

k = 1: <multiloop first body>

end

k = 2: (block ([]->[]) (br k) ... end k = 0:)

end

end

Composition with existing control flow
For each k = n, where does the inner (br k) target?

loop ([]->[]) k = 3:

multiloop ([]->[]), ([]->[])

k = 1: <multiloop first body>

end

k = 2: (block ([]->[]) (br k) ... end k = 0:)

end

end

Composition with existing control flow
For each k = n, where does the inner (br k) target?

loop ([]->[]) k = 3:

multiloop ([]->[]), ([]->[])

k = 1: <multiloop first body>

end

k = 2: (block ([]->[]) (br k) ... end k = 0:)

end

end

Exception handling

● How can multiloop compose with the Wasm try/catch proposal?

● Obvious semantics - if an uncaught exception is thrown in any body of
the multiloop, the multiloop as a whole is broken out of.

● Is this semantics-preserving for source programs?

Exception handling

try {

 f_maythrow();

 a:

 g_maythrow();

} catch () {

 h();

 goto a;

}

Exception handling

try {

 f_maythrow();

 a:

 g_maythrow();

} catch () {

 h();

 goto a;

}

try

 ???

catch

 (call $h)

 ???

end

Exception handling

try {

 f_maythrow();

 a:

 g_maythrow();

} catch () {

 h();

 goto a;

}

try

 (call $f)

 (call $g)

catch

 (call $h)

 ???

end

Exception handling

try {

 f_maythrow();

 a:

 g_maythrow();

} catch () {

 h();

 goto a;

}

multiloop <2>

 try

 (call $f)

 catch

 (call $h)

 (br 1)

 end

end

 try

 (call $g)

 catch

 (call $h)

 (br 1)

 end

end

C++ standard to the rescue!

● “A goto or switch statement shall not be used to transfer control
into a try block or into a handler.” (N4713 18.3)
○ explicitly forbids jumping from a catch back into a try body

● So this code is actually not legal C++!

● Due to this restriction, we can always translate a C++ try/catch into a
Wasm multiloop and outer try/catch - we never need to handle
jumping back into the multiloop from the catch

Except...

● LLVM’s exception-handling is more general

● No explicit try scope, just (effectively) floating catch blocks which can
be thrown to from anywhere in the function

● While the example isn’t valid C++, an analogous example is valid
LLVM IR.

LLVM-style basic blocks

LLVM

● We can’t write a C++ program that will generate this LLVM directly

● We can craft a C++ program that LLVM will optimise into this CFG

int x = 1:

a:

try {

 if (x) {

 f_maythrow();

 }

 g_maythrow();

} catch () {

 h();

 x = 0;

 goto a;

}

int x = 1:

a:

try {

 if (x) {

 f_maythrow();

 }

 g_maythrow();

} catch () {

 h();

 x = 0;

 goto a;

}

int x = 1:

a:

try {

 if (x) {

 f_maythrow();

 }

 g_maythrow();

} catch () {

 h();

 x = 0;

 goto a;

}

int x = 1:

a:

try {

 if (x) {

 f_maythrow();

 }

 g_maythrow();

} catch () {

 h();

 x = 0;

 goto a;

}

Consequences
● LLVM would still need some minor code duplication/transformation

even with multiloop
○ Still much less than is currently necessary!
○ Could be fully supported through a more generalised multiloop

with catch blocks.

● A toolchain that preserves source try/catch nesting could use
multiloop and Wasm try/catch to implement C++-style
exceptions without issue

Implementation

● multiloop should cause no issues for validation, or baseline
compilers

○ One-pass compilers already need to deal with compiling jumps
out of blocks they haven’t seen the end of yet

○ The important thing is that target type signatures need to be
available - hence forward declaration

● I believe the main blocker is that some optimising compilers would
need to be re-engineered to handle the more general control flow

Implementation

● Some optimising compilers would need to be re-engineered to handle
the more general control flow

● My main concern would be a JavaScript Proper Tail Calls scenario -
some engines can easily optimise multiloop, and some perhaps
can’t. Consensus seeking might become painful.

● Maybe multiloop can initially be part of a toolchain-only “pre-Wasm”
which must be transformed before deployment to the Web?
○ Solves the producer erg issue, but not the performance issue

How to build a case for irreducible CF?

● Immediately visceral: find an existing program compiled to Wasm
that is slowed down by the insertion of lots of CF indirections

○ Appear to be some pretty compelling Go examples, although
these could potentially be addressed by better async support
(e.g. continuations)

○ Would be good to find a C/C++ example

How to build a case for irreducible CF?

● Hard to quantify “road not taken” impact

○ Compiler Wasm targets abandoned/never attempted due to
perceived complexity

○ Wasm deployments abandoned due to (relevant) performance
issues

● Can we collect anecdata?

Write-up (including exception-handling)

● https://tinyurl.com/multiloop
○ https://gist.github.com/conrad-watt/6a620cb8b7d8f0191296e3eb24dffdef

● Special thanks to Heejin Ahn, Ross Tate, and Alon Zakai for
some incredibly helpful conversations!

https://tinyurl.com/multiloop

Analogy to funclets (extra)
● The top-level multiloop is like a funclet_region

● The forward-declaration of body types is like a naive funclet_sig
○ As mentioned, we could bikeshed more efficient representations

● The existing br instructions work like
funclet_call, funclet_call_if, etc

● Difference: a funclet nested inside another funclet can’t contain jumps
to the outer funclet.

