<. -
W 193lia

DECIMAL VALUES
FOR JAVASCRIPT

May 2021

Caio Lima - Igalia

™) igalia
‘-

?
WHO AM I:

il ﬂ :
—_—. A
@

Aé L,, f ,‘,ﬁ

Caio’'s family

CAIO’'S HOME

Santo Amaro

™. .
W 193lia

WHAT'S WRONG WITH
NUMBERS?

ISSUES WITH JS NUMBERS

 They are not intuitive to programmers

>>>0.1+0.2===0.3

false
>>>0.1 +0.2==0.30000000000000004 // true

true

ISSUES WITH JS NUMBERS

e They are binary float numbers, some decimal
numbers can’t be encoded exactly

e |t makes Number unsuitable for some
application

« Most developers design algorithms thinking
on Decimal space

HOW TO WORKAROUND THESE
ISSUES

e User-land libraries like big.js

» Pairs of (mantissa, exponent) passed around

e Using strings

» Represent money using cents (Numbers or
Biglnt)

e Perform calculations on other languages
(client-server architecture)

USE CASES NEEDING DECIMALS

e Financial applications

e Astronomical calculations
e Physics

e Certain games

™) igalia
‘-

IONS
SIBLE SOLUT
POS

DATA MODELS

e New primitive type that simplifies decimal
values manipulation
= Fixed-size Decimal (Decimal128)
= Arbitrary precision decimal (BigDecimal)
= Rationals (discarded for this proposal)

®™, .
W 193lia

DECIMAL128

DATA REPRESENTATION

« Have a maximum number of digits

sign

exponent: up to 6144

mantissa: 34 base-10 digits

value = sing * mantissa * 10 * exponent

PRIOR EXPERIENCES

e Other languages have fixed-size decimal
support
= Python
 C
» |EEE 754-2008
= Swift

IEEE 754-2008 FIXED-SIZE DECIMAL

» 64-bit and 128-bit versions (and more)
« Two binary encodings (“Intel” BID vs “IBM”
DPD)

sign

exponent: up to 6144

mantissa: 34 base-10 digits

128-bits representation

IEEE 754-2008 FIXED-SIZE DECIMAL

e Similarly to binary floating point:
= Decimal-Infinity, NaN values
= Various rounding modes
= Recoverable “signals” for error
conditions
e In this proposal, if we use fixed-size decimal,
we’'d use IEEE 754 128-bit

CREATING DECIMAL128 VALUES

e Literals can be declared using m suffix after
the number:

leta=0.123m
let b =-1e-10m; // scientific notation

e Or using constructor as type casting
operator:

let @ = Decimal128(3); // returns 3m
let b = Decimal128("345"); // returns 345m

ARITHMETIC OPERATORS

e Supportto +, -, *, /,and %

e Possibility of supporting **

e + with strings still concatenate results, just
like Biglnt and Numbers

e Like Biglnt, mixing Decimal128 with other
types throws TypeError

COMPARISON OPERATORS

e It's is possible to compare Decimal128
values, including with other types:

567.00000000000001m < 567n; // false
998m == 998; // true

703.04 >= 703.0400001m; // false

Om <= "9"; // true

654m === 654m; // false

ROUNDING ON ARITHMETIC
OPERATIONS

e Given fixed-size precision, all operations
might round if result’s precision is greater
than specified

e The rounding algorithm used on Decimal128
arithmetics is half even

e All operators use the same rounding rule

DECIMAL128 UPSIDES

e |ts performance and memory usage is better
In comparison with BigDecimal

e It's very suitable for financial applications

e The rounding happens more intuitively than
binary floats

DECIMAL128 DOWNSIDES

e We still have rounding happening when
precision of a number is too high

e Has considerable limitation on values
representation when compared with
BigDecimal space

™ .
W 193lia

BIGDECIMAL

DATA REPRESENTATION

« Number of digits grows with the number
» Represent (almost) any decimal exactly

sign

exponent

mantissa — Bigint.......................

value = sign * mantissa * 10 * exponent

PRIOR EXPERIENCES

e Other languages with arbitrary-length
decimal support
= Ruby
= Java

BIGDECIMAL USAGE

|t follows what we have for Decimal128
= Support with arithmetic and comparison
operators
= Literals would also work there
» BigDecimal () constructor as type
casting operator
e Some division requires some precision limit
(e.g 1/3)

BIGDECIMAL DIVISION

e In Java, division requires MathContext that
defines result’s precision and rounding

e |f no precision is defined, it throws exception
on divisions with infinity precision result

e But Java don't support BigDecimals on /,
only on BigDecimal.divide()

BIGDECIMAL DIVISION

e In Ruby, BigDecimals are supported by /
operator

e There's a global setting for the precision of
division

e |t can be set with BigDecimal.limit ()

e Divisions round to this precision

JS BIGDECIMAL DIVISION

e Give the exact result when result’s precision
Is finite

e Round to an arbitrary precision when division
result has infinity precision

e There's no way to configure rounding or
precision for / operator

e If there's need to customize division
precision or rounding, it's possible to use
BigDecimal.divide()

BIGDECIMAL

e Upsides
= Represent any decimal exactly. Never
losing precision!
= Simpler than rationals (no gcd)
» + - * can all be calculated exactly
« Downsides
» Can be computationally/memory
Intensive
= Multiplication increases precision fast

*™ . .
W 193lia

STANDARD LIBRARY

ROUND OPERATION

BigDecimal/Decimall28.round (decimal, options)

e options: Itis an object with roundingMode
and maximumFractionDigits options.
= roundingMode: selects the algorithm to
perform the rounding. It can be down,
half up, half enven, etc.

>>> BigDecimal.round(3.25m, { roundingMode: "half up", maximumFractionDigits: 1 });
3.3m

ARITHMETIC OPERATIONS

BigDecimal/Decimall28.divide (lhs, rhs [, options])

e options: It is the same option bags from
BigDecimal. round

>>> BigDecimal.divide(1m, 3m, { roundingMode: "half up", maximumFractionDigits: 1 });
0.3m

ARITHMETIC

e There's also:
s BigDecimal/
s BigDecimal/
= BigDecimal/
» BigDecimal/
» BigDecimal/

OPERATIONS

Decimall28.add

Decimall28.subtract
Decimall28.multiply
Decimall28. reminder

Decimall28. pow

 They make Decimals easier to polyfill

PROTOTYPE FUNCTIONS

« We also support on
Decimall28/BigDecimal.prototype the
following:

s toString

» toLocaleString
» toFixed

» toExponential
» toPrecision

NORMALIZATION

e« Decimals are always “normalized”
= Or: there's no way to observe differences
In precision
e« Not worth the complexity to differentiate
further
» Mental model, design and
implementation

Thank youl!
Questions?

