
DECIMAL VALUES

FOR JAVASCRIPT
May 2021

Caio Lima - Igalia

WHO AM I?

CAIO

Caio’s family

CAIO’S HOME

Santo Amaro

WHAT’S WRONG WITH

NUMBERS?

ISSUES WITH JS NUMBERS

They are not intuitive to programmers

>>> 0.1 + 0.2 === 0.3

false

>>> 0.1 + 0.2 === 0.30000000000000004 // true

true

ISSUES WITH JS NUMBERS

They are binary float numbers, some decimal
numbers can’t be encoded exactly
It makes Number unsuitable for some
application
Most developers design algorithms thinking
on Decimal space

HOW TO WORKAROUND THESE

ISSUES

User-land libraries like big.js
Pairs of (mantissa, exponent) passed around
Using strings
Represent money using cents (Numbers or
BigInt)
Perform calculations on other languages
(client-server architecture)

USE CASES NEEDING DECIMALS

Financial applications
Astronomical calculations
Physics
Certain games

POSSIBLE SOLUTIONS

DATA MODELS

New primitive type that simplifies decimal
values manipulation

Fixed-size Decimal (Decimal128)
Arbitrary precision decimal (BigDecimal)
Rationals (discarded for this proposal)

DECIMAL128

DATA REPRESENTATION

Have a maximum number of digits

value = sing * mantissa * 10 ^ exponent

PRIOR EXPERIENCES

Other languages have fixed-size decimal
support

Python
C#
IEEE 754-2008
Swift

IEEE 754-2008 FIXED-SIZE DECIMAL

64-bit and 128-bit versions (and more)
Two binary encodings (“Intel” BID vs “IBM”
DPD)

128-bits representation

IEEE 754-2008 FIXED-SIZE DECIMAL

Similarly to binary floating point:
Decimal-Infinity, NaN values
Various rounding modes
Recoverable “signals” for error
conditions

In this proposal, if we use fixed-size decimal,
we’d use IEEE 754 128-bit

CREATING DECIMAL128 VALUES

Literals can be declared using m suffix after
the number:

Or using constructor as type casting
operator:

let a = 0.123m

let b = -1e-10m; // scientific notation

let a = Decimal128(3); // returns 3m

let b = Decimal128("345"); // returns 345m

ARITHMETIC OPERATORS

Support to + , - , * , / , and %
Possibility of supporting **
+ with strings still concatenate results, just
like BigInt and Numbers
Like BigInt, mixing Decimal128 with other
types throws TypeError

COMPARISON OPERATORS

It’s is possible to compare Decimal128
values, including with other types:

567.00000000000001m < 567n; // false

998m == 998; // true

703.04 >= 703.0400001m; // false

9m <= "9"; // true

654m === 654m; // false

ROUNDING ON ARITHMETIC

OPERATIONS

Given fixed-size precision, all operations
might round if result’s precision is greater
than specified
The rounding algorithm used on Decimal128
arithmetics is half even
All operators use the same rounding rule

DECIMAL128 UPSIDES

Its performance and memory usage is better
in comparison with BigDecimal
It’s very suitable for financial applications
The rounding happens more intuitively than
binary floats

DECIMAL128 DOWNSIDES

We still have rounding happening when
precision of a number is too high
Has considerable limitation on values
representation when compared with
BigDecimal space

BIGDECIMAL

DATA REPRESENTATION

Number of digits grows with the number
Represent (almost) any decimal exactly

value = sign * mantissa * 10 ^ exponent

PRIOR EXPERIENCES

Other languages with arbitrary-length
decimal support

Ruby
Java

BIGDECIMAL USAGE

It follows what we have for Decimal128
Support with arithmetic and comparison
operators
Literals would also work there
BigDecimal() constructor as type
casting operator

Some division requires some precision limit
(e.g 1/3)

BIGDECIMAL DIVISION

In Java, division requires MathContext that
defines result’s precision and rounding
If no precision is defined, it throws exception
on divisions with infinity precision result
But Java don’t support BigDecimals on / ,
only on BigDecimal.divide()

BIGDECIMAL DIVISION

In Ruby, BigDecimals are supported by /
operator
There’s a global setting for the precision of
division
It can be set with BigDecimal.limit()
Divisions round to this precision

JS BIGDECIMAL DIVISION

Give the exact result when result’s precision
is finite
Round to an arbitrary precision when division
result has infinity precision
There’s no way to configure rounding or
precision for / operator
If there’s need to customize division
precision or rounding, it’s possible to use
BigDecimal.divide()

BIGDECIMAL

Upsides
Represent any decimal exactly. Never
losing precision!
Simpler than rationals (no gcd)
+, -, * can all be calculated exactly

Downsides
Can be computationally/memory
intensive
Multiplication increases precision fast

STANDARD LIBRARY

ROUND OPERATION

options : It is an object with roundingMode
and maximumFractionDigits options.

roundingMode : selects the algorithm to
perform the rounding. It can be down ,
half up , half enven , etc.

BigDecimal/Decimal128.round(decimal, options)

>>> BigDecimal.round(3.25m, { roundingMode: "half up", maximumFractionDigits: 1 });

3.3m

ARITHMETIC OPERATIONS

options : It is the same option bags from
BigDecimal.round

BigDecimal/Decimal128.divide(lhs, rhs [, options])

>>> BigDecimal.divide(1m, 3m, { roundingMode: "half up", maximumFractionDigits: 1 });

0.3m

ARITHMETIC OPERATIONS

There’s also:
BigDecimal/Decimal128.add

BigDecimal/Decimal128.subtract

BigDecimal/Decimal128.multiply

BigDecimal/Decimal128.reminder

BigDecimal/Decimal128.pow

They make Decimals easier to polyfill

PROTOTYPE FUNCTIONS

We also support on
Decimal128/BigDecimal.prototype the
following:

toString

toLocaleString

toFixed

toExponential

toPrecision

NORMALIZATION

Decimals are always “normalized”
Or: there’s no way to observe differences
in precision

Not worth the complexity to differentiate
further

Mental model, design and
implementation

Thank you!

Questions?

