
BUILDING WPE FORBUILDING WPE FOR
AN EMBEDDEDAN EMBEDDED

DEVICEDEVICE
Supported hardware, WPEBackends, BSPs

clopez@igalia.com
psaavedra@igalia.com

https://people.igalia.com/psaavedra/slides/webengines-hackfest-2021-wpe-embedded

1

mailto:clopez@igalia.com
mailto:psaavedra@igalia.com
https://people.igalia.com/psaavedra/slides/webengines-hackfest-2021-wpe-embedded

WPE ARCHITECTUREWPE ARCHITECTURE

2 . 1

WPE STACKWPE STACK

2 . 2

WEBKIT PROCESS MODEL (1/2)WEBKIT PROCESS MODEL (1/2)

2 . 3

WEBKIT PROCESS MODEL (2/2)WEBKIT PROCESS MODEL (2/2)

2 . 4

LIBWPE INTERFACESLIBWPE INTERFACES

2 . 5

WPE BACKENDS: LIBWPEWPE BACKENDS: LIBWPE
IMPLEMENTATIONSIMPLEMENTATIONS

Used by the WPE port
Provides the implementation of the interfaces
defined by the libwpe for rendering and input
handling
Sets EGL resources as requirement for the graphical
output consuption (OpenGLv2)
Several implementations but the most relevant are:
wpebackend-rdk , wpebackend-fdo , …

2 . 6

WPEBACKEND-RDKWPEBACKEND-RDK
RDK is a Set-top boxes consortium
Covers different STB hardware and proptotype
boards
Uses a propietary API (Dispmanx) to lowest level
access to the GPU
It is supported by the propietary RPi Broadcom
driver

2 . 7

WPEBACKEND-FDOWPEBACKEND-FDO
Uses Wayland protocol to coordinate the operations
among the interface implementations
Depends on the Wayland EGL support
(EGL_WL_bin_wayland_display)
Relies in GLib as IPC mechanism for comunication in
between the host and the backend
In theory, compatible with any Mesa driver
implementation

2 . 8

Conclusion 1: Several libs combinations (libwpe,
libwebkit, cog …) and several backend
implementations that makes a bit difficult the setup.

2 . 9

WEBKIT’S JAVASCRIPT (JSC)WEBKIT’S JAVASCRIPT (JSC)
SUPPORTSUPPORT

Depends on the CPU architecture
Fully operational for JSC: armv7, arm64, x86
x86_64, mips32

With limitations for 32bits architectures: FTL JIT and
WebAssembly are disabled.
Other architectures risc-v, mips64, powerpc
... expected to work but only with a less optimized
interpreter

3 . 1

Conclusion 2: WPE configuration is sensitive to the
underlying hardware and so�ware stack where it
has to work

3 . 2

WHAT MAKES A HARDWARE PLATFORMWHAT MAKES A HARDWARE PLATFORM
System-on-Chip (SoC)
GPU
CPU

3 . 3

EXAMPLE (1/3): NXP I.MX 6EXAMPLE (1/3): NXP I.MX 6
SoC: i.MX6Q
GPU: Vivante GC2000 / GC320
CPU: NXP i.MX 6 - Cortex-A9 - quad-core

3 . 4

EXAMPLE (2/3): RASPBERRI PI 4 BEXAMPLE (2/3): RASPBERRI PI 4 B
SoC: BCM2711B0
GPU: Broadcom VideoCore VI 500MHz
CPU: A72 - quad-core

3 . 5

EXAMPLE (3/3): QUALCOMMEXAMPLE (3/3): QUALCOMM
SoC: APQ8017
GPU: Adreno 306
CPU: Qualcomm - Cortex-A53 CPU

3 . 6

… MORE SUPPORTED HARDWARE… MORE SUPPORTED HARDWARE
wpewebkit.org/about/supported-hardware

3 . 7

https://wpewebkit.org/about/supported-hardware.html

Conclusion 3: WPE works in the top of several
multiple different hardware platforms

3 . 8

BOARD SUPPORT PACKAGE (BSP)BOARD SUPPORT PACKAGE (BSP)

4 . 1

BOARD SUPPORT PACKAGE (BSP)BOARD SUPPORT PACKAGE (BSP)

Problem 1: Several libs and dependencies that
makes a bit difficult the the setup.

Problem 2: WPE is sensitive to the underlying
hardware and so�ware stack where it has to work

Problem 3: WPE works in the top of several multiple
different hardware platforms

Solution: A so�ware layer that enables an
hardware-specific platform: BSP

4 . 2

BOARD SUPPORT PACKAGE (1/3)BOARD SUPPORT PACKAGE (1/3)
Bootloader and Linux kernel
SoC operative system support:

SoC support (peripherals, storage, network, …)
Graphics stack support

Userspace tools and interfaces
WebKit stack:
libwpe

WPE backend implementation
WebKit WPE runtime
WPE browser (cog)

4 . 3

BOARD SUPPORT PACKAGE (2/3)BOARD SUPPORT PACKAGE (2/3)

4 . 4

BOARD SUPPORT PACKAGE (3/3)BOARD SUPPORT PACKAGE (3/3)
Assembling all the user space components needed
for the system, configure them, develop the upgrade
and recovery mechanisms, etc.
Application development: write the company-
specific applications and libraries.
Building from source
Cross-compilation
Recipes for building components

4 . 5

YOCTO VS BUILDROOTYOCTO VS BUILDROOT
Yocto/OpenEmbedded:

Builds a full Linux distro with binary pkgs.
Powerful, but somewhat complex, and quite steep
learning curve.

Buildroot:
Builds a root filesystem image, no binary pkgs.
Much simpler to use, understand and modify.
WPE recipe in upstream buidroot (thanks
aperezdc !)

5 . 1

YOCTO (1/2)YOCTO (1/2)
YP is not a distro but is something that allow you to
build your own distro …
Combines, maintains and validates three key
development elements: …

5 . 2

YOCTO (2/2)YOCTO (2/2)
1. A set of integrated tools to make working with

embedded Linux successful, including tools for
automated building and testing: , …

2. : A reference embedded distribution
3. The OpenEmbedded build system, co-maintained

with the

The Yocto build enviroment is structurated in layers.
Let’s see the layers like a set of recipes, classes and

definitions that extend the base distribution.

Bitbake Wic
Poky

OpenEmbedded Project

5 . 3

https://www.yoctoproject.org/software-item/bitbake/
https://www.yoctoproject.org/docs/2.4.2/dev-manual/dev-manual.html#creating-partitioned-images-using-wic
https://www.yoctoproject.org/software-item/poky/
https://www.openembedded.org/wiki/Main_Page

5 . 4

META-WEBKITMETA-WEBKIT

Created on Oct 2015 by Carlos López ().

 is an compatible Yocto BSP meta-layer
which provides recipes for and :

The runtime and libraries for wpe and
webkitgtk

The libwpe
The WPE backends implementations:
wpebackend-fdo and wpebackend-rdk
and the reference WPE browser: cog

blog

meta-webkit
WebKitGTK WPE

5 . 5

http://blog.neutrino.es/2015/meta-webkit-yocto-layer/
https://github.com/Igalia/meta-webkit/
https://webkitgtk.org/
https://wpewebkit.org/

meta-webkitmeta-webkit::
├── conf
│ └── layer.conf
├── recipes-browser
│ ├── cog
│ │ └── cog_0.8.0.bb
│ ├── libwpe
│ │ └── libwpe_1.8.0.bb
│ ├── webkitgtk
│ │ └── webkitgtk_2.32.0.bb
│ ├── wpebackend-fdo
│ │ └── wpebackend-fdo_1.8.3.bb
│ └── wpewebkit
│ └── wpewebkit_2.32.0.bb
└── ...

5 . 6

HANDS-DOWNHANDS-DOWN

6 . 1

WPE ON A RPI (META-WEBKIT)WPE ON A RPI (META-WEBKIT)
1. Specify architecture, policies, patches …
2. Fetches and downloads the source code
3. Extracts the sources into a local work area
4. Build binary packages
5. QA and sanity checks
6. Build system generates root file image
7. Build system generates the system image and the

extensible SDK (eSDK)

6 . 2

GETTING THE SOURCES AND ACTIVATEGETTING THE SOURCES AND ACTIVATE
THE ENVIRONMENTTHE ENVIRONMENT

cd ${HOME}/yocto-rpi3-wpe
git clone https://git.yoctoproject.org/git/poky -b hardknott
git clone git://git.openembedded.org/meta-openembedded -b hardknott
git clone https://github.com/OSSystems/meta-gstreamer1.0 -b master
git clone https://git.yoctoproject.org/git/meta-raspberrypi -b

master
git clone https://github.com/Igalia/meta-webkit -b master

$ source poky/oe-init-build-env

6 . 3

bblayers.confbblayers.conf::
$ cat conf/bblayers.conf

BSPDIR := "${@os.path.abspath(os.path.dirname(d.getVar('FILE',

True)) + '/../..')}"

BBLAYERS = " ${BSPDIR}/poky/meta \
 ${BSPDIR}/poky/meta-poky \
 ${BSPDIR}/poky/meta-yocto-bsp \
 ${BSPDIR}/meta-openembedded/meta-oe \
 ${BSPDIR}/meta-openembedded/meta-python \
 ${BSPDIR}/meta-gstreamer1.0 \
 ${BSPDIR}/meta-raspberrypi \
 ${BSPDIR}/meta-webkit \
"

6 . 4

local.conflocal.conf::
$ cat local.conf
MACHINE = 'raspberrypi3'
MACHINE_FEATURES_append = " vc4graphics"
GPU_MEM_256 = "128"
GPU_MEM_512 = "196"
GPU_MEM_1024 = "396"
EXTRA_IMAGE_FEATURES = "debug-tweaks"
IMAGE_FEATURES_append = " ssh-server-dropbear hwcodecs"
DISABLE_VC4GRAPHICS = "1"
PREFERRED_PROVIDER_virtual/wpebackend = "wpebackend-fdo"
PREFERRED_PROVIDER_virtual/libwpe = "libwpe"
IMAGE_INSTALL_append = " cog wpewebkit"

6 . 5

RUN BITBAKERUN BITBAKE
$ bitbake core-image-weston
Loading cache: 100% |#################| Time: 0:00:00
Loaded 3376 entries from dependency cache.
Parsing recipes: 100% |#################| Time: 0:20:00
Build Configuration:
BB_VERSION = "1.36.0"
BUILD_SYS = "x86_64-linux"
NATIVELSBSTRING = "universal"
TARGET_SYS = "arm-linux-gnueabi"
MACHINE = "raspberrypi3"
DISTRO = "poky"
DISTRO_VERSION = "1.0.0"
meta
meta-poky
meta-yocto-bsp = "hardknott"

$ ls tmp/deploy/images/raspberrypi3/*wic
tmp/deploy/images/raspberrypi3/core-image-weston.wic

6 . 6

RUNNING COG IN RPIRUNNING COG IN RPI
root@raspberrypi3:~# export WAYLAND_DISPLAY=wayland-0
root@raspberrypi3:~# export XDG_RUNTIME_DIR=/run/user/0
root@raspberrypi3:~# cog -P fdo http://wpewebkit.org

6 . 7

THANKSTHANKS

7

DISCUSSION / QUESTIONSDISCUSSION / QUESTIONS

8

