y“ igalia

BUILDING WPE FOR
AN EMBEDDED
DEVICE

Supported hardware, WPEBackends, BSPs

clopez@igalia.com
psaavedra@igalia.com

https://people.igalia.com/psaavedra/slides/webengines-hackfest-2021-wpe-embedded

mailto:clopez@igalia.com
mailto:psaavedra@igalia.com
https://people.igalia.com/psaavedra/slides/webengines-hackfest-2021-wpe-embedded

T
W 193lia

WPE ARCHITECTURE

WPE STACK

[Application]

Ny
Cog

Operating System

Hardware

WEBKIT PROCESS MODEL (1/2)

P
= ==

WEBKIT PROCESS MODEL (2/2)

UlProcess : WebProcess -~ 1 : N
i > i.e. widgets

View:Page~1:1

LIBWPE INTERFACES

WPE BACKENDS: LIBWPE
IMPLEMENTATIONS

e Used by the WPE port

e Provides the implementation of the interfaces
defined by the Libwpe for rendering and input
handling

e Sets EGL resources as requirement for the graphical
output consuption (OpenGLv2)

e Several implementations but the most relevant are:

wpebackend- rdk, wpebackend- fdo, ...

WPEBACKEND-RDK

RDK is a Set-top boxes consortium

Covers different STB hardware and proptotype
boards

Uses a propietary API (Dispmanx) to lowest level
access to the GPU

It is supported by the propietary RPi Broadcom
driver

WPEBACKEND-FDO

e Uses Wayland protocol to coordinate the operations
among the interface implementations

e Depends on the Wayland EGL support
(EGL WL bin wayland display)

e Reliesin GLib as IPC mechanism for comunication in

netween the host and the backend

e Intheory, compatible with any Mesa driver
implementation

e Conclusion 1: Several libs combinations (Libwpe,
Libwebkit, cog ...)and several backend
implementations that makes a bit difficult the setup.

WEBKIT’S JAVASCRIPT (JSTf>"
SUPPORT

Depends on the CPU architecture
Fully operational for JSC: armv7, arm64, x86
x86 64, mips32
With limitations for 32bits architectures: FTL JIT and
WebAssembly are disabled.
Other architectures risc-v, mips64, powerpc

. expected to work but only with a less optimized
Interpreter

e Conclusion 2: WPE configuration is sensitive to the
underlying hardware and software stack where it
has to work

WHAT MAKES A HARDWARE PLATFORM

e System-on-Chip (SoC)
e GPU
e CPU

EXAMPLE (1/3): NXP I.MX 6

e SoC:I1.MX6Q
e GPU: Vivante GC2000/ GC320
e CPU: NXP i.MX6 - Cortex-A9 - quad-core

EXAMPLE (2/3): RASPBERRI P14 B

e SoC: BCM2711B0
e GPU: Broadcom VideoCore VI 500MHz
e CPU: A72 - quad-core

EXAMPLE (3/3): QUALCOMM

e SoC: APQ8017
e GPU: Adreno 306
e CPU: Qualcomm - Cortex-A53 CPU

... MORE SUPPORTED HARDWARE

wpewebkit.org/about/supported-hardware

https://wpewebkit.org/about/supported-hardware.html

e Conclusion 3: WPE works in the top of several
multiple different hardware platforms

oL T
W 193lia

BOARD SUPPORT PACKAGE (BSP)

BOARD SUPPORT PACKAGE (BSP)

e Problem 1: Several libs and dependencies that
makes a bit difficult the the setup.

e Problem 2: WPE is sensitive to the underlying
hardware and software stack where it has to work

e Problem 3: WPE works in the top of several multiple
different hardware platforms

e Solution: A software layer that enables an
hardware-specific platform: BSP

BOARD SUPPORT PACKAGE (1/3)

Bootloader and Linux kernel

SoC operative system support:

s SoC support (peripherals, storage, network, ...)
= Graphics stack support

Userspace tools and interfaces

WebKit stack:

= Libwpe

= WPE backend implementation

= WebKit WPE runtime

= WPE browser (coqg)

BOARD SUPPORT PACKAGE (2/3)

O =)

port and Drivers

BOARD SUPPORT PACKAGE (3/3)

e Assembling all the user space components needed
for the system, configure them, develop the upgrade
and recovery mechanisms, etc.

e Application development: write the company-
specific applications and libraries.

e Building from source

e Cross-compilation

e Recipes for building components

&) igalia
YOCTO VS BUILDROOT
e Yocto/OpenEmbedded:
= Builds a full Linux distro with binary pkgs.
m Powerful, but somewhat complex, and quite steep
learning curve.
e Buildroot:
= Builds a root filesystem image, no binary pkgs.
= Much simpler to use, understand and modify.

s WPE recipe in upstream buidroot (thanks
aperezdc!)

YOCTO (1/2)

e YP is not a distro but is something that allow you to
build your own distro ...

e Combines, maintains and validates three key
development elements: ...

YOCTO (2/2)

1. A set of integrated tools to make working with
embedded Linux successful, including tools for
automated building and testing: Bitbake, Wic ...

2. Poky: A reference embedded distribution

3. The OpenEmbedded build system, co-maintained
with the OpenEmbedded Project

The Yocto build enviroment is structurated in layers.
Let’s see the layers like a set of recipes, classes and
definitions that extend the base distribution.

https://www.yoctoproject.org/software-item/bitbake/
https://www.yoctoproject.org/docs/2.4.2/dev-manual/dev-manual.html#creating-partitioned-images-using-wic
https://www.yoctoproject.org/software-item/poky/
https://www.openembedded.org/wiki/Main_Page

Layers

Distro Layer

COPYING
README
classes
* bbclass
conf
distro
include
*.inc
<distro=.conf
layer.conf
recipes-*
<recipe=
files
defeonfig
*h
init
<recipe=.bb
<recipe=
<recipe=.bbappend

Software Layer

COPYING
README
conf
layer.conf
recipes-*
<recipa>
<recipa=.bhb
<recipe>
<recipa=.bhb
files
* patch

BSP Layer

COPYING
README
conf
machine
<machine=.conf
layer.conf
recipes-bsp
formfactor
farmfactor
=machine=
machconfig
formfactor* . bbappend
recipes-care
<recipe=
files
<recipe=.bbappend
recipes-graphics
“recipe=
“recipes>
=machine>
= conf
<recipe>.bhappend
recipes-kernal
linuix
files
<machine=.cfg
<machine=scc
<recipe>.bhappend

Build Directory

conf
bblayers.conf

|

Metadata
Machine Configuration
Palicy Configuration

BitBake

META-WEBKIT

e Created on Oct 2015 by Carlos Lopez (blog).

e meta-webkit is an compatible Yocto BSP meta-layer
which provides recipes for WebKitGTK and WPE:

= The runtime and libraries for wpe and
webkitgtk

= The libwpe

= The WPE backends implementations:
wpebackend-fdo and wpebackend- rdk

= and the reference WPE browser: cog

http://blog.neutrino.es/2015/meta-webkit-yocto-layer/
https://github.com/Igalia/meta-webkit/
https://webkitgtk.org/
https://wpewebkit.org/

meta-webkit:
— conf

| L— layer.conf

— recipes-browser

| cog

| | L— cog_0.8.0.bb

| — libwpe

| | — libwpe_1.8.0.bb

| — webkitgtk

| | L— webkitgtk 2.32.0.bb
| — wpebackend-fdo

| | L wpebackend-fdo_1.8.3.bb
| L— wpewebkit

|

L— wpewebkit_2.32.0.bb
I_ [B |

&) igalia

HANDS-DOWN

~N OO O A W N B

WPE ON A RPI (META-WEBKIT)

. Specify architecture, policies, patches ...

. Fetches and downloads the source code

. Extracts the sources into a local work area

. Build binary packages

. QA and sanity checks

. Build system generates root file image

. Build system generates the system image and the

extensible SDK (eSDK)

GETTING THE SOURCES AND ACTIVATE
THE ENVIRONMENT

cd ${HOME}/yocto-rpi3-wpe

git clone https://git.yoctoproject.org/git/poky -b hardknott

git clone git://git.openembedded.org/meta-openembedded -b hardknott

git clone https://github.com/0SSystems/meta-gstreamerl.0 -b master

git clone https://git.yoctoproject.org/git/meta-raspberrypi -b
master

git clone https://github.com/Igalia/meta-webkit -b master

$ source poky/oe-init-build-env

bblayers.conf:

$ cat conf/bblayers.conf

BSPDIR := "${@os.path.abspath(os.path.dirname(d.getVar('FILE",
True)) + '/../..")}"

BBLAYERS = " ${BSPDIR}/poky/meta \
${BSPDIR}/poky/meta-poky \
${BSPDIR}/poky/meta-yocto-bsp \
${BSPDIR}/meta-openembedded/meta-oe \
${BSPDIR}/meta-openembedded/meta-python \
${BSPDIR}/meta-gstreamer1.0 \
${BSPDIR}/meta-raspberrypi \
${BSPDIR}/meta-webkit \

local.conft:

$ cat local.conf

MACHINE = 'raspberrypi3'

MACHINE_FEATURES_append = " vcd4graphics"

GPU_MEM_256 = "128"

GPU_MEM_512 = "196"

GPU_MEM_1024 = "396"

EXTRA_IMAGE_FEATURES = "debug-tweaks"
IMAGE_FEATURES_append = " ssh-server-dropbear hwcodecs"
DISABLE_VC4GRAPHICS = "1"
PREFERRED_PROVIDER_virtual/wpebackend = "wpebackend-fdo"
PREFERRED_PROVIDER_virtual/libwpe = "libwpe"
IMAGE_INSTALL_append = " cog wpewebkit"

RUN BITBAKE

$ bitbake core-image-weston

Loading cache: 100% |########H###H#HA###A##]| Time: 0:00:00
Loaded 3376 entries from dependency cache.

Parsing recipes: 100% |###########HA#H#A##] Time: 0:20:00
Build Configuration:

BB_VERSION = "1.36.0"

BUILD_SYS = '""x86_64-1inux"
NATIVELSBSTRING = "universal"
TARGET_SYS = "arm-linux-gnueabi"
MACHINE = "raspberrypi3"
DISTRO = "poky"
DISTRO_VERSION = "1.0.0"

meta

meta-poky

meta-yocto-bsp = "hardknott"

$ 1ls tmp/deploy/images/raspberrypi3/*wic
tmp/deploy/images/raspberrypi3/core-image-weston.wic

RUNNING COG IN RPI

root@raspberrypi3:~# export WAYLAND_DISPLAY=wayland-0
root@raspberrypi3d:~# export XDG_RUNTIME_DIR=/run/user/0
root@raspberrypi3:~# cog -P fdo http://wpewebkit.org

&) igalia

THANKS

.
W 193lia

DISCUSSION / QUESTIONS

