
A tour of compiling a WebAssembly.Module

4.29.2021

Ryan Hunt
ryan@mozilla.com



● Input: Module bytecode
● Output:

○ Loaded and linked machine code
○ Metadata about the code
○ Metadata about the module

● Goals:
○ Minimize latency of compile time
○ Maximize quality of compiled code
○ These goals are in tension

● Solution: Two compilers!
○ Baseline: optimized for latency
○ Ion: optimized for quality of compiled code
○ Compile with baseline first, swap in with Ion later

Compiling a WebAssembly.Module

2



● Not all compilers are always available
○ Platforms may have differing compiler support
○ New proposals may not be available on all compilers
○ Debugging is only supported in baseline

● Tiering is not always available
○ Must be able to compile in the background

● Tiering is not always beneficial
○ Must have enough executable memory for two copies of compiled code
○ Must have large enough module to justify overhead
○ Use heuristics based on size of code section

■ e.g. code bytes * 2.45 = estimated x64 machine code bytes
■ e.g. code bytes / 2100 = estimated ion compile milliseconds
■ Adjust for available parallelism

Selecting a strategy

3



● Minimize latency by compiling functions as they are downloaded
● Decode and validate all sections before code into a ‘module environment’

○ Contains types, memories, globals, tables, etc.
● Estimate and pre-size buffers based off of module size

○ Re-use tiering heuristics
● Compile each function as its definition becomes available
● Merge compiled code into final code buffer

Streaming compilation

4



● Compile function definitions in parallel
● Depends on a shared immutable ‘module environment’
● Batch function definitions in each compile task

○ Compilation unit is still an individual function
○ Smoothes over overhead of scheduling a task, there can be many tiny functions

● Optimal batch size is another heuristic
○ e.g. Batch ~10_000 bytecode’s for baseline
○ e.g. Batch ~1000 bytecode’s for ion

● This may reorder functions in the final buffer, but that’s okay

Parallel compilation

5



● Generate stubs for interoperating with JS
○ Handle conversion between ABI and value representations
○ Entry stubs allow calling a function from the JS interpreter or JIT
○ Exit stubs allow calling an imported JS function

● Load and link code
○ Allocate executable memory and copy
○ Patch absolute addresses now that final destination is known
○ Patch addresses of runtime dependent data, such as VM functions
○ Write protect and enable execution

● Module code is shareable across instances and threads
● Just finished first tier? Run the whole process again in the background

Finishing the Module

6



Tiering up

● How do we switch from baseline to optimized code?
○ Baseline code may be shared across instances and threads!
○ Baseline code may be currently executing on different thread!

● Use a jump-table indexed by function definition
○ Every baseline function prologue loads from jump-table and jumps to address
○ Expensive no-op when optimized code hasn’t arrived yet
○ Jumps into body of optimized code when jump-table is patched
○ Optimized and baseline functions must have compatible stack frames
○ Patching jump-table is not-atomic in presence of threads, but safe

● Pitfall: Only can tier up on function boundaries
● Pitfall: Baseline function pointers are not universally revoked

○ Persist in table entries and imported functions
● Pitfall: No freeing of baseline executable memory

7



● We generate entry stubs for each exported function
● Problem: Not every exported function will be called from JS
● Solution: Only generate stubs for a function when grabbed from the exports object

○ Problem: Some notable web content will touch every exported function, but never call them
● Solution II: Only generate stubs when a function is called

○ Problem: Allocating an individual executable page for each function is wasteful
● Tweak: Generate some stubs eagerly (following another heuristic)
● How does this interact with tiering?

○ Each tier gets own set of stubs; code pointers are hard-coded in
○ We must observe a locking protocol when generating lazy stubs or tiering up to avoid a race 

in jump-tables

Lazy stubs

8



● Why repeat all this work on page reload, if we’ve already compiled a module?
● Serialize code and metadata

○ Gecko can store optimized representations of network resources in ‘alt-data’
○ Must use a Response object in the WebAssembly JS-API

● Deserialize from the ‘alt-data’ cache on reloads
● Currently unfinished due to some missing pieces in Gecko

○ Hope to finish this soon!

Code caching (future)

9



Summary

10

● Tiering allows us to achieve both low-latency and good code quality
○ The speed of baseline allows WebAssembly to compete with JS in startup time
○ We don’t want anyone to worry about including WebAssembly in their webapp

● Easy streaming/parallelism are enabled due to WebAssembly’s design
○ Lessons learned from JS and other bytecodes
○ Let’s keep that the case!

● Heuristics and performance tuning are still important



Thank You


