
© 2019 Arm Limited

Chromium team @Arm
2019-10-14

Chromium updates from Arm

Higher, faster, stronger

Dave Rodgman & Adenilson Cavalcanti

2 © 2019 Arm Limited

Intro: a talk in three parts

• New platforms
• Bringing the web to Windows-on-Arm

• Faster
• How we’ve made the web faster

• Stronger
• Up-coming hardware security features that will make the web more secure

© 2019 Arm Limited

Bringing the web to
new platforms

Windows-on-Arm

4 © 2019 Arm Limited

Bringing the web to Windows on Arm

• Lots of new devices emerging
– Outstanding on power

• Great battery life
• Fanless (great form factor)

– Strong performance
• Native performance is excellent
• But lots of software is x86 emulated

• Emulation works against performance,
stability and power

• We’ve worked on enabling native builds of
Chromium, Electron and CEF

• Chromium
– Builds out-of-the-box for Windows on Arm
– Performance is 2.4x faster on Speedometer
– Stable – unit tests near parity with Intel

• Electron
– Electron 6 has native support
– We ported Visual Studio Code to prove the concept

• CEF
– CEF 78 has native support
– Unit test parity with Intel

Chromium 74+

2.4 times faster when native

5 © 2019 Arm Limited

Visual Studio Code

Electron/Chromium based

Builds natively

© 2019 Arm Limited

Optimizing the browser
for Arm

Android, ChromeOS, Windows, Linux

7 © 2019 Arm Limited

zlib: back in 2017's Hackfest (2 years ago...)

8 © 2019 Arm Limited

Chromium’s zlib status in 2019

• Land the libpng optimization. Done*!

• CRC32: Armv8 instruction is about 10x 20x faster. Done!

• Fix infback corner case. Done!

• Compression comes next. Done!

* libpng patch.

https://github.com/glennrp/libpng/commit/7734cda20cf1236aef60f3bbd2267c97bbb40869

9 © 2019 Arm Limited

Chromium’s zlib status in 2019

• Land the libpng optimization. Done*!

• CRC32: Armv8 instruction is about 10x 20x faster. Done!

• Fix infback corner case. Done!

• Compression comes next. Done!

• Android migration to Chromium's zlib. WIP**.

* libpng patch.
** Android repo: https://android.googlesource.com/platform/external/zlib

https://github.com/glennrp/libpng/commit/7734cda20cf1236aef60f3bbd2267c97bbb40869
https://android.googlesource.com/platform/external/zlib

10 © 2019 Arm Limited

Chromium’s zlib: performance in 2019

*Current data spreadsheet.

Decompression (+70% to 120%), compression (+10% to 36%)

https://docs.google.com/spreadsheets/d/1_rOPJ1AXCs1EGOiy_qtiSpeAgmJ6C9v1b_oMh4xODRo/edit?usp=sharing

11 © 2019 Arm Limited

zlib: where is it used?

• Network operations (i.e. content-encoding: gzip)

• PNG decoding

• Chronet
• (Chromium network library – used in other projects, e.g. Gsuite apps)

Optimizations enabled new use-cases

• Javascript source strings compression

• V8 snapshots

• Chromium JS/HTML resource.pak

• Android: all things gzip (e.g. apks, java compression API, etc)

https://bugs.chromium.org/p/chromium/issues/detail?id=924164
https://bugs.chromium.org/p/chromium/issues/detail?id=912902
https://bugs.chromium.org/p/chromium/issues/detail?id=833361
https://bugs.chromium.org/p/chromium/issues/detail?id=982762

12 © 2019 Arm Limited

JPEG: Optimizing Chromium's libjpeg-turbo
Work in progress... crbug/922430

Landed

Optimized paths for decompression
• Color conversion
• Upsampling (simple, fancy, merged)
• Inverse discrete cosine transform (scaling and

regular)
• Average 24% reduced decode time (64-bit)

Still to come

Push compression optimization patches
• Color conversion
• Downsampling
• Sample conversion / quantization
• Forward discrete cosine transform
• Huffman encoding

Optimizations written using NEON intrinsics
• Common source code implementation for

both 32- and 64-bit
• Easier to maintain than assembly
• Allows security tools (such as MSan) to

analyze optimized paths

Push all optimizations to upstream project:
• Firefox and Safari will benefit too!

https://bugs.chromium.org/p/chromium/issues/detail?id=922430

13 © 2019 Arm Limited

JPEG decode time reduction in Chrome (64-bit)

H2V2 sampled images

H1V1 and H2V1 sampled images

14 © 2019 Arm Limited

Hashing

• Started in ShapeCache: layout boost of 19%@x86 and 23%@Arm

• Improving hashing in Blink: 16x to 21x faster SHA1 leveraging BoringSSL, 7x faster
SHA256

• Reduces time spent in v8.execute()*

• Ongoing effort to migrate code base from SuperFastHash() to FastHash**()

* 9% on wikipedia (265ms vs 289ms)

** Boost in 7x to 8x

https://bugs.chromium.org/p/chromium/issues/detail?id=735674
https://bugs.chromium.org/p/chromium/issues/detail?id=974341
https://bugs.chromium.org/p/chromium/issues/detail?id=974341

15 © 2019 Arm Limited

Hashing: SHA1 boost between 6x (Intel) to 22x (Arm little cores)

https://bugs.chromium.org/p/chromium/issues/detail?id=974341

16 © 2019 Arm Limited

FastHash():
initial
experimental
data

Pinpoint: https://pinpoint-dot-chromeperf.appspot.com/job/14d4ef83f40000

https://pinpoint-dot-chromeperf.appspot.com/job/14d4ef83f40000

17 © 2019 Arm Limited

Hashing: next steps

• Migrate code base to use the faster hash (i.e. 3GB/s to 15GB/s @Intel, similar boost for
Arm).

• Slow progress: legacy code (e.g. UMA metrics).

• Tracking bug: https://bugs.chromium.org/p/chromium/issues/detail?id=902789#c31

https://bugs.chromium.org/p/chromium/issues/detail?id=902789

18 © 2019 Arm Limited

Harfbuzz: minor changes

Optimizations

• Experimented with branchless binary search
• faster on little cores… but slower for big cores
• tried various approaches, sometimes faster on big, but never both at once :-(

• Faster big endian conversion (using REV16 / BSWAP instruction)
• 8 - 11% boost for Latin

• Compiler optimizations:
• 9 - 10% additional for Latin
• Take-away: -O3 makes a difference!

https://bugs.chromium.org/p/chromium/issues/detail?id=907244
https://bugs.chromium.org/p/chromium/issues/detail?id=902782

19 © 2019 Arm Limited

GIF

20 © 2019 Arm Limited

GIF decode

• Restructured LZW decoding.

• Write output in larger (8 byte) chunks.

• Regressions are for very small images so low impact.

• Average 17% improvement on big cores.

© 2019 Arm Limited

New architectural features
for a more secure web

MTE, PAuth, BTI

22 © 2019 Arm Limited

Security from the CPU upwards
Coming soon: hardware features which secure the web

• Securing the web means working at lots of levels
• JS frameworks, browser APIs, etc
• But also low levels – hardware features can boost security
• Browser is all about handling untrusted data

• Common attack vectors include
• Memory bugs
• Control Flow Integrity

• Recent iterations of the Arm architecture introduced lots of security-related features
• Pointer Authentication
• Memory Tagging
• Branch Target Identification
• Crypto Extensions
• Random Number Generator

2/3 of Critical Vulnerabilities
& Exposures (CVEs)

23 © 2019 Arm Limited

Memory Tagging Extensions
Detect common memory bugs

• Upper bits in pointers store ‘color’ for
allocated data

• Memory also records its color (each
16-byte block has a 4-bit color)

• Non-invasive
• Only the memory allocator is changed

• Protect against
• Buffer overflow
• Use-after-free

• Precise vs imprecise
• Precise: synchronous, slower
• Imprecise: asynchronous, don’t capture

exact location, low overhead

char *ptr = new char[16]; // memory colored

ptr[17] = 5; // color mismatch –> overflow

delete[] ptr; // memory re-colored on free

ptr[10] = 10; // color mismatch –> use-after-free

X

X

24 © 2019 Arm Limited

Memory Tagging Extensions usage models & benefits

• Imprecise checking will detect
any tagging mismatch

• May be used for all applications
and performance sensitive
processes

• Targeting minimal performance
overhead

Detection

• Precise checking will stop
execution on a tag mismatch

• Can be used for system services
and other privilege escalation
targets

• Some performance overhead is
expected

• Precise checking will stop
execution on a tag mismatch

• Can be used for all SW during
pre-production cycles

• Some performance overhead is
expected

Mitigation Debug

Browser in the field Privileged Software

Key system services

Browser debugging

OEMs/OSV get in-field issue
reports before they are

turned into exploits – even in
3rd party code and apps

OEMs/OSV protect their
consumers data by aborting
as soon as a vulnerability in
critical services is detected

OEMs/OSV find errors before
they ever leave the factory
reducing support costs and

damage to reputation

25 © 2019 Arm Limited

Memory Tagging Extensions
Internal prototyping in Chromium
Oilpan

• Prototype designed, implemented, tested on a model
– Testing on a model works well
– Changes were limited to the allocator – no impact on the rest of the codebase

• Passes all blink_heap_unittests
• Some memory size increase (object headers increase; object size must be multiple of 16 bytes)
• Overall, memory increases by 1% (which causes around 1% performance drop)
• Potentially some additional performance overhead from tagging and checking

libjpeg-turbo
• Good candidate for buffer-overflow attacks via malformed JPEGs
• Nested allocation

– Uses its own front-end allocator on top of the heap manager (jemalloc)
– Front-end receives a large tagged block
– Front-end re-tags sub-blocks on allocation

• Very small code changes were needed

Prototypes confirmed MTE is
non-invasive and low-impact

26 © 2019 Arm Limited

Pointer Authentication

• What’s a gadget?
• Attacker uses (e.g.) buffer over-run to corrupt stack
• Return address replaced with address of a gadget
• Gadget is a pre-existing short sequence of instructions

(followed by return)
• After gadget executes & returns, the next gadget runs, etc
• A sequence of gadgets is Turing complete

• How Pointer Authentication can help
• Return address is cryptographically signed (not

encrypted) on function entry
– Return address is combined with stack pointer, and signed

with a secret key
– Use of stack pointer helps protect against pointer

substitution

• Immediately before returning, pointer is validated and
signature removed

• Function prologue:
PACIASP
SUB sp, sp, #0x40
STP x29, x30, [sp,#0x30]
ADD x29, sp, #0x30

• Function epilogue:
LDP x29,x30,[sp,#0x30]
ADD sp,sp,#0x40
AUTIASP
RET

Sign return address
(modify x30)

Validate & remove
signature (from x30)

Illegal address exception
if validation failed

More details: https://ourcommunity.arm.com/forums/index.php?/blog/446/entry-3195-pointer-authentication-basics/

Defend against ROP attacks

https://ourcommunity.arm.com/forums/index.php?/blog/446/entry-3195-pointer-authentication-basics/

27 © 2019 Arm Limited

Pointer Authentication

• What does it defend against?
• Malicious input data

– primarily Javascript
– also malformed images, etc

• Prevent attackers from executing arbitrary code
• Web browsers have potential for high benefit [1]

• Just a compiler flag?
• Almost, but some impact in stack unwinding

(e.g. libunwind)
• JIT compilers should generate PAuth instructions

in order to benefit
• Otherwise minimal impact

• Binary compatibility
• Encoded in NOP space
• Old hardware ignores PAuth instructions

• Performance impact
• Two additional instructions per function

– Reduce overhead by skipping leaf functions

• Expect less than 2% performance overhead

• Future: data pointer authentication
• Instructions exist for authenticated memory reads
• Could offer additional protection at higher

overhead

[1] https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf

Impact on the browser

https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf

28 © 2019 Arm Limited

Branch Target Identification
Complement to Pointer Authentication

• Pointer Authentication
• Secures the control flow between functions
• Limits attacker’s ability to call gadgets

• Branch Target Identifcation
• Protects the targets of indirect branches
• Restricts what can be used as a gadget

• Mechanism
• Introduce new BTI instruction (aka “landing pad”)
• Indirect branches may only branch to BTI instructions
• Just a compiler flag

– (assembly may need manual BTI instructions)

• Binary compatibility
• Encoded in NOP space
• Old hardware ignores BTI instructions

Combined Benefit

glibc (Ubuntu 14.04) gadgets ≤ 10 instructions

• Longer gadgets are less useful

Type No
PAC/BTI

With
PAC/BTI

Reduction

ROP 16,585 264 59x

JOP 5,845 11 531x

Combined 22,430 275 82x

29 © 2019 Arm Limited

What does this mean for the browser?

Work needed: non-invasive

• Memory Tagging Extensions
• Allocators (and de-allocators) need changes to

handle tagging
• Lots of options to trade-off performance vs. level of

benefit
• Bulk of code will not change

• Pointer Authentication
• Stack unwinding code needs minor changes

• Branch Target Identification
• Assembly code may need to add BTI instructions

Benefits

• Massive reduction in ROP/JOP attack surface
• Defend against malicious input

• Detect most common type of CVE (memory bugs)
• Spot security issues before they are exploited

More secure, most code needs no change

30 © 2019 Arm Limited

Questions

• Are there areas that would benefit from optimisation on Arm?

• What should Arm be doing to help the browser?
• Performance
• Security
• Other

Chromium team @Arm
dave.rodgman@arm.com

adenilson.cavalcanti@arm.com
stephen.kyle@arm.com

richard.townsend@arm.com
jonathan.wright@arm.com
andrea.brunato@arm.com

jack.davison@arm.com

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद
شكرًا
תודה

© 2019 Arm Limited

33 © 2019 Arm Limited

JPEG decode time reduction in Chrome (32-bit)

H2V2 sampled images

H1V1 and H2V1 sampled images

34 © 2019 Arm Limited

Harfbuzz: byte swapping

35 © 2019 Arm Limited

Miscellaneous optimizations

• Helping out with V8's pointer compression implementation on AArch64
• improved performance of Speedometer by 1%

• Instruction scheduling improvements for V8 builtins
• improved other JS benchmarks (octane, jetstream, etc) by 1.2%

• Some improvements for brotli as well
• 5% reduction in decompression time on little cores

