(L5

m A

ro

f

ro

ilson Cavalcanti

Chromium team @Arm

n & Aden

a

i
{

’
l

.Dave Rodgm

+

e

i

-10-14

2019

© 2019 Arm Limited

Intro: a talk in three parts

* New platforms

« Bringing the web to Windows-on-Arm

 Faster

- How we’ve made the web faster

* Stronger
« Up-coming hardware security features that will make the web more secure

2 © 2019 Arm Limited a rm

arm Bringingthe web to
' " ' - new platforms

Windows-on-Arm

Bringing the web to Windows on Arm

- Lots of new devices emerging « Chromium
— Outstandingon power — Builds out-of-the-box for Windows on Arm
- Great battery life — Performance is 2.4x faster on Speedometer
- Fanless (great form factor) — Stable — unit tests near parity with Intel
— Strong performance
- Native performance is excellent - Electron
- But lots of software is x86 emulated — Electron 6 has native support

— We ported Visual Studio Code to prove the concept

- Emulation works against performance,

stability and power - CEF
— CEF 78 has native support

— Unit test parity with Intel

- We've worked on enabling native builds of
Chromium, Electron and CEF

4 2019 Arm Limited a r m

' JZ File Edit Selection View Go Debug Terminal Help paths.js - vscode - Code - OSS —_ O S%

Recycle Bin @ EXPLORER JS paths.js x t:l m -
4 OPEN EDITORS 1 : s
p X IS pathsjs sic p * Copyright (c) Microsoft Corporation. All rights reserved.
- “ 4 VSCODE i i Licensed under the MIT License. See License.txt in the project root for licent
Microsoft ? > .github 5
Edge > .vscode 6 //@ts-check
> build 7 'use strict’;
. ® b extensions 8
» node_modules 9 // @ts-ignore h
chromium-n... [.-. e 10 const pkg = require(’'../package.json');
=4 i 11 const path = require(’'path’);
out-but 12 const os = require(‘os');
b out-vscode 13 I
- b resources 14 e
Chiomne b scripts 15 * @param {string} platform
. 4 src 16 * @returns {string}
s 17 7
> typings .
b ve 18 function getAppDataPath(platform)
®) 19 switch (platform) {
LS 20 case 'win32': return process.env['VSCODE APPDATA'] || process.env[®APPDAT/
5 bootstrap-amd.js 21 case 'darwin’: return process.env['VSCODE _APPDATA'] || path.join(os.homed:
JS bootstrap-fork.js 22 case 'linux’: return process.env['VSCODE APPDATA'] || process.env['XDG_COI
JS bootstrap-window.js 23 default: throw new Error('Platform not supported®);
JS bootstrap.js 24 5 ¥
Js buildfile.js ;Z i
IS clijs 27 J**
IS mainjs 28 * @param {string} platform
JS paths.js 29 * @returns {string}
{} tsconfig.base.json 30 7
31 function getDefaultUserDataPath(platform) {
o J 32 return path.join(getAppDataPath(platform), pkg.name);
Visual Studio Code 3
34

E l ECtron/ Chrom Ium baSEd exports.ZLZSZ?ZziiEzz:DZtgl‘:?t\:pga::gz:;ultUserDaaah
Builds natively -

Optimizing the browser
- - for Arm

- Android, ChromeQOS, Windows, Linux

zlib: back in 2017's Hackfest (2 years ago...)

What comes next

Land the libpng optimization.

CRC32: ARMvS instruction is about 10x faster.
Fix infoack corner case.

Compression comes next.

Zlib users should consider migrating to Chromium’s zlib.

© 2019 Arm Limited a r m

Chromium’s zlib status in 2019

* Land the libpng optimization. Done™!

* CRC32: Armv8 instruction is about 48x 20x faster. Done!
* Fix infback corner case. Done!

* Compression comes next. Done!

*libpng patch.

8 © 2019 Arm Limited a rm

https://github.com/glennrp/libpng/commit/7734cda20cf1236aef60f3bbd2267c97bbb40869

Chromium’s zlib status in 2019

* Land the libpng optimization. Done™!

* CRC32: Armv8 instructionis about 48x 20x faster. Done!
* Fix infback corner case. Done!

* Compression comes next. Done!

* Android migration to Chromium's zlib. WIP**.

*libpng patch.
** Android repo: https://android.googlesource.com/platform/external/zlib

9 © 2019 Arm Limited a r m

https://github.com/glennrp/libpng/commit/7734cda20cf1236aef60f3bbd2267c97bbb40869
https://android.googlesource.com/platform/external/zlib

Chromium’s zlib: performance in 2019

Decompression (+70% to 120%), compression (+10% to 36%)

aarch32: Gzip format improvement aarch64: Gzip format improvement

@ compression @ decompression @ compression @ decompression
2 25
[])]
L]]
175 e ° e < .
[] 2 o P (] o
= ® =
E 15 . =
- ™ ¢ @ o 5
g e ¢ o g 15
& 125 e 4 @ ° S ¢
8 ¢ d ®] & ® ™
@ & ° ® o @ *
", 4" ! YR .Y s S L8] tn " 4" I e Ly oo L]
FFF T LS FITT T S EANE I R FFF S
Jbb ‘bb ‘bb o \.@t@ Q"'hs\ @Q- ‘gp ‘5#3‘ > y @Q‘ @ s "P @b '@b % ‘QP@ &5\ o %{p a;f& 3 \{ﬁ:‘ @ s
Q 9 w8 & X & o 9 q‘b{? & & o
file file

*Current data spreadsheet.

10 © 2019 Arm Limited

arm

https://docs.google.com/spreadsheets/d/1_rOPJ1AXCs1EGOiy_qtiSpeAgmJ6C9v1b_oMh4xODRo/edit?usp=sharing

zlib: where is it used?

* Network operations (i.e. content-encoding: gzip)
e PNGdecoding

* Chronet
* (Chromium network library — used in other projects, e.g. Gsuite apps)

Optimizations enabled new use-cases
» Javascript source strings compression

V8 snapshots

e Chromium JS/HTML resource.pak
* Android: all things gzip (e.g. apks, java compression API, etc)

11 © 2019 Arm Limited a rm

https://bugs.chromium.org/p/chromium/issues/detail?id=924164
https://bugs.chromium.org/p/chromium/issues/detail?id=912902
https://bugs.chromium.org/p/chromium/issues/detail?id=833361
https://bugs.chromium.org/p/chromium/issues/detail?id=982762

JPEG: Optimizing Chromium's libjpeg-turbo

Work in progress... crbug/922430

Landed Still to come
Optimized paths for decompression Push compression optimization patches
- Color conversion - Color conversion
- Upsampling (simple, fancy, merged) - Downsampling
- Inverse discrete cosine transform (scaling and - Sample conversion / quantization
regular) - Forward discrete cosine transform
- Average 24% reduced decode time (64-bit) - Huffman encoding

Optimizationswritten using NEON intrinsics

 Common source code implementation for

Push all optimizationsto upstream project:
both 32- and 64-bit

* Firefox and Safari will benefit too!

* Easier to maintainthan assembly

* Allows security tools (such as MSan) to
analyze optimized paths

12 © 2019 Arm Limited a r m

https://bugs.chromium.org/p/chromium/issues/detail?id=922430

JPEG decode time reduction in Chrome (64-bit)

Big = Cortex-A75; Little = Cortex-A55

13

50.00%

45.00%

H2V2 sampled images

X

40.00%

35.00%

30.00%

25.00%

20.00%

% Reduction in overall decode time

15.00%

10.00%

5.00%

0.00%

H1V1and H2V1 sampled images

W big
W little

\li\

\

|

s

YNELL OO DD R AS B AR PP RIERIETEPOCELRIE DT PP E LI PR PGS D

© 2019 Arm Limited

Google JPEG Corpus

arm

Hashing

* Started in ShapeCache: layout boost of 19%@x86 and 23%@Arm

* Improving hashingin Blink: 16x to 21x faster SHA1 leveraging BoringSSL, 7x faster
SHA256

* Reduces time spent in v8.execute()*

* Ongoing effort to migrate code base from SuperFastHash() to FastHash**()

* 9% on wikipedia (265ms vs 289ms)
** Boost in 7x to 8x

14 © 2019 Arm Limited a r m

https://bugs.chromium.org/p/chromium/issues/detail?id=735674
https://bugs.chromium.org/p/chromium/issues/detail?id=974341
https://bugs.chromium.org/p/chromium/issues/detail?id=974341

Hashing: SHA1 boost between 6x (Intel) to 22x (Arm little cores)

SHA1 optimization (MB/s)

B vanilla | optimized

1500

1000

500

ATZ ATE Xeon

armvy

- Device q r m

https://bugs.chromium.org/p/chromium/issues/detail?id=974341

Find Histogram name | chromium@4246b31 v |a=001| [%pavg v| |Export| ¥ Showall Help Feedback
 name| [devicelds| [stories| " benchmarkStart

Fa St H a S h () : Name - chromium@4246b31 ¥ chromium@4246b31 + 3128311 Y

many-block-children-auto-inline-size ~ = 55.139 = +7.9% L) =
PP T | attach-inlines ~ = 8.330 = +71% C =
I n Itla fixed-grid-lots-of-stretched-data ~ = 110.853 = +7.1% ©) =
. flexbox-row-stretch-height-definite ~ = 75.216 = +7.0% © =
expe rl m e nta I many-block-children-fixed-inline-size ~ = 58.011 = +6.0% =
fit-content-change-available-size-blocks ~ = 11.474 = +5.5% L =
flexbox-deeply-nested-column-flow ~ = 1,274.122 = +4.1% O =
d ata nested-blocks-with-percent-height-and-... ~ = 884.591 = +4.0% © =
change-text-css-contain ~ = 6.036 = +3.8% O =
line-layout-repeat-append-select ~ = 21411 = +29% © =
multicol_fixed-height-with-spanner-and-... ~ = 45.298 = +2.3% O =
auto-grid-lots-of-data ~ = 60.588 = +2.3% © =
line-layout-repeat-append ~ = 28.046 = +2.2% © =
flexbox-with-stretch-layout ~ = 3.372 = +20% 0 =
fixed-grid-lots-of-data ~ = 117.390 = +1.9% L) =
multicol_tall-content-short-columns-reali... ~ = 28.227 = +1.9% © =
large-grid ~ = 0.345 = +1.8% ©) =
attach-inlines-2 ~ = 1,569.412 = +1.7% O =
large-spanning-grid-item »~ = 278.828 = +1.7% O =
flexbox-row-wrap ~ = 222199 = +1.6% © =
flexbox-column-nowrap ~ = 509.937 = +1.5% O =
flexbox-column-wrap ~ = 505.971 = +1.4% O =
nested-percent-height-tables ~ = 0.055 = +1.1% O =
multicol _deeply-nested-tables ~ = 2477.791 = +1.0% © =
flexbox-row-nowrap ~ = 225.099 = +0.9% © =
character_fallback ~ = 2,873.948 ms = +0.8% &) =
add-remove-inline-floats ~ = 7.934 = +0.8% O =
line-layout ~ = 25.046 = +H07%E =

Pinpoint: https://pinpoint-dot-chromeperf.appspot.com/job/14d4ef83f40000

16 © 2019 Arm Limited a r m

https://pinpoint-dot-chromeperf.appspot.com/job/14d4ef83f40000

Hashing: next steps

* Migrate code base to use the faster hash (i.e. 3GB/s to 15GB/s @Intel, similar boost for
Arm).

* Slow progress: legacy code (e.g. UMA metrics).

e Tracking bug: https://bugs.chromium.org/p/chromium/issues/detail?id=9027894c31

17 © 2019 Arm Limited a r m

https://bugs.chromium.org/p/chromium/issues/detail?id=902789

Harfbuzz: minor changes

Optimizations

* Experimented with branchless binary search

- faster on little cores... but slower for big cores
- tried various approaches, sometimes faster on big, but never both at once :-(

* Faster big endian conversion (using REV16 / BSWAP instruction)
« 8- 11% boost for Latin

* Compiler optimizations:
- 9-10% additional for Latin
- Take-away: -O3 makes a difference!

18 © 2019 Arm Limited a rm

https://bugs.chromium.org/p/chromium/issues/detail?id=907244
https://bugs.chromium.org/p/chromium/issues/detail?id=902782

© 2019 Arm Limited a rm

GIF decode

* Restructured LZW decoding.

* Write outputin larger (8 byte) chunks.

* Regressions are for very small images so low impact.
* Average 17% improvement on big cores.

CORTEX A72

60

20

0

-20
MU EEO U U N X U PO COSEEE S UB P Y CE UL GO0 LYY ORUE S UE D Hx T
o =@mAa =5 Cc &3 aESad Vo B L ="="12¢ VB a8 oo 8
n"mYm L5 SRl e T 2 M e PN WELE S 0 I =B 20 g Vel
Ll & -] = i = — T W P i = = [— = = N — = —
- W = L STOLC =pm -:L"—‘.-S:u'._.-_—‘— =1 ,r_-._'m'_""'.i A= ':u‘;:].ln"";j':.:' = i1
= T 4 m £7 @ = E:fiYagFe =T =2 g T T EAS
o > > |_ = =] & o E :ﬂ:—\. n \]E] =-'-_| UJUE-—?'
20 © 2019 Arm Limited — o - o = = M3 o5 mE oOmLom
o 5 c Em E BESL D
= m = —_ == =

arm

New architectural features
for a more secure web

/. . . MTE PAuth, BTl
/7 “/"'-/ w7,

Security from the CPU upwards

Coming soon: hardware features which secure the web

e Securing the web means working at lots of levels
- JS frameworks, browser APIs, etc
- But also low levels — hardware features can boost security
- Browser is all about handling untrusted data

e Common attack vectors include 2/3 of Critical Vulnerabilities
- Memory bugs & Exposures (CVEs)

- Control Flow Integrity

* Recent iterations of the Arm architecture introduced lots of security-related features
- Pointer Authentication
- Memory Tagging
- Branch Target Identification
- Crypto Extensions
- Random Number Generator

22 © 2019 Arm Limited a r m

Memory Tagging Extensions

Detect common memory bugs

* Upper bits in pointers store ‘color’ for
allocated data

« Memory also records its color (each
16-byte block has a 4-bit color)

* Non-invasive
« Only the memory allocator is changed

* Protect against
- Buffer overflow
- Use-after-free

* Precise vsimprecise
 Precise: synchronous, slower
« Imprecise: asynchronous, don’t capture
exact location, low overhead

23 © 2019 Arm Limited

char *ptr = new char[16]; // memory colored

— X
ptr[17] = 5; // color mismatch -> overflow

>

delete[] ptr; // memory re-colored on free

N —

o

ptr[10] = 10; // color mismatch -> use-after-free

arm

Memory Tagging Extensions usage models & benefits

Detection

Browser in the field

* Imprecise checking will detect
any tagging mismatch

* May be used for all applications
and performance sensitive
processes

e Targeting minimal performance
overhead

OEMs/OSV get in-field issue
reports before they are

turned into exploits—even in
3" party code and apps

24 © 2019 Arm Limited

Mitigation
Privileged Software

Key system services

* Precise checking will stop
execution on a tag mismatch

* Canbe used for system services
and other privilege escalation
targets

* Some performance overhead is
expected

OEMs/OSV protect their
consumers data by aborting

as soon as a vulnerabilityin
critical services is detected

Debug

Browser debugging

* Precise checking will stop
execution on a tag mismatch

e Canbe used for all SW during
pre-production cycles

* Some performance overhead is
expected

OEMs/OSV find errors before
they ever leave the factory

reducing support costs and
damage to reputation

arm

Memory Tagging Extensions

Internal prototyping in Chromium
Oilpan

 Prototype designed, implemented, tested on a model

- Testing on a model works well
- Changes were limited to the allocator —no impact on the rest of the codebase

Passes all blink_heap_unittests

Some memory size increase (object headers increase; object size must be multiple of 16 bytes)
Overall, memory increases by 1% (which causes around 1% performance drop)

Potentially some additional performance overhead from tagging and checking

libjpeg-turbo
- Good candidate for buffer-overflow attacks via malformed JPEGs
- Nested allocation Prototypes confirmed MTE is
- Uses its own front-end allocator on top of the heap manager (jemalloc) non-invasive and low-impact
- Front-end receives a large tagged block
- Front-end re-tags sub-blocks on allocation

- Very small code changes were needed

25 © 2019 Arm Limited a r m

Pointer Authentication
Defend against ROP attacks

* What’sa gadget?
« Attacker uses (e.g.) buffer over-run to corrupt stack
« Return address replaced with address of a gadget
« Gadget is a pre-existing short sequence of instructions
(followed by return)
« After gadget executes & returns, the next gadget runs, etc
« A sequence of gadgets is Turing complete

* How Pointer Authentication can help

« Return address is cryptographically signed (not
encrypted) on function entry
- Return address is combined with stack pointer, and signed
with a secret key
- Use of stack pointer helps protect against pointer
substitution
« Immediately before returning, pointer is validated and
signature removed

26 © 2019 Arm Limited

More details: https://ourcommunity.arm.com/forums/index.php?/blog /446/entry-3195-pointer-authentication-basics/

. Sign return address
Function prologue: (modify x30)
PACIASP

SUB Sp, Sp, #0x40
STP x29, x30, [sp,#0x30]
ADD xX29, sp, #0x30

Function epilogue:
LDP X29,x30,[sp,#0x30]
ADD sp, sp,#9x40

AUTIASP Validate & remove
RET signature (from x30)

Illegal address exception
if validation failed

arm

https://ourcommunity.arm.com/forums/index.php?/blog/446/entry-3195-pointer-authentication-basics/

Pointer Authentication
Impact on the browser

* What does it defend against? e Binary compatibility

- Maliciousinput data - Encoded in NOP space

- primarily Javascript - Old hardware ignores PAuth instructions
— also malformed images, etc

- Prevent attackers from executing arbitrary code

- Web browsers have potential for high benefit [1] * Performance impact
- Two additionalinstructions per function

— Reduce overhead by skipping leaf functions

3 i ?
Justa compiler flag: - Expect less than 2% performance overhead

- Almost, but some impact in stack unwinding
(e.g. libunwind)

- JIT compilers should generate PAuth instructions
in order to benefit

- Otherwise minimal impact

* Future: data pointer authentication
- Instructions exist for authenticated memory reads
- Could offer additional protection at higher
overhead

27 © 2019 Arm Limited [1] https://www.qualcomm.com/media/documents/files /whitepaper-pointer-authentication-on-armv8-3.pdf a rm

https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf

Branch Target Identification
Complement to Pointer Authentication

28

Pointer Authentication
- Secures the control flow between functions
« Limits attacker’s ability to call gadgets

Branch Target Identifcation
 Protects the targets of indirect branches
 Restricts what can be used as a gadget

Mechanism
+ Introduce new BTl instruction (aka “landing pad”)
« Indirect branches may only branch to BTl instructions

 Just a compiler flag
- (assembly may need manual BTl instructions)

Binary compatibility
« Encoded in NOP space
« Old hardware ignores BTl instructions

© 2019 Arm Limited

Combined Benefit

glibc (Ubuntu 14.04) gadgets < 10 instructions

Longer gadgets are less useful

No With Reduction
PAC/BTI PAC/BTI
ROP 16,585 264 59x
JOP 5,845 11 531x
Combined 22,430 275 82x

arm

What does this mean for the browser?

More secure, most code needs no change

Work needed: non-invasive

* Memory Tagging Extensions
- Allocators(and de-allocators) need changes to
handletagging
- Lots of optionsto trade-off performance vs. level of
benefit
- Bulk of code will not change

* Pointer Authentication
- Stack unwindingcode needs minor changes

* Branch Target Identification
- Assembly code may need to add BTl instructions

29 © 2019 Arm Limited

Benefits

Massive reduction in ROP/JOP attack surface
- Defend against maliciousinput

Detect most common type of CVE (memory bugs)
- Spot security issues beforethey are exploited

arm

Questions

* Are there areas that would benefit from optimisation on Arm?

* What should Arm be doing to help the browser?
- Performance

- Security
« Other

Chromium team @Arm
dave.rodgman@arm.com

adenilson.cavalcanti@arm.com
stephen.kyle@arm.com
richard.townsend@arm.com
jonathan.wright@arm.com
andrea.brunato@arm.com
jack.davison@arm.com

30 © 2019 Arm Limited a r m

arm

© 2019 Arm Limited

- Thank You
Danke
Merci

-

HYHED
Gracias

_ ~ Kiitos
T AR L O
To-AdIC
58

N TIN

JPEG decode time reduction in Chrome (32-bit)

33

30.00%

20.00%

10.00%

% Reduction in overall decode time

0.00%

-10.00%

© 2019 Arm Limited

Big = Cortex-A75; Little = Cortex-A55

| H H1V1and H2V1 sampled images
f
th«é@ e@@@@¢@#@@@é@@&@@#%@%é@@@&@@@@@&&&¢¢¢@
H2V2 sampled images

Google JPEG Corpus

B hig
H little

arm

Harfbuzz: byte swapping

< C 1t @ File | Ffile;//home/adenilson/chromium/src/tools/perf/results.html?g=ebook&r=blink_perf.layout%0A2018-11-20%2021%3A00%3A588s=%25Aavg&g=name&c=2

i Apps & FreeRentalCar: </ STRML:Project O » Playall & Issue28953005: @ Whatthe Heck [1 Online Educat W R*tree-wikipe: W R-tree-wikipe

ebook x ~ |blink_perflayout 2018-11-2021:00:58 ¥| | a=0.01 | [%favg v| |Export| ¥ Showall Help Feedback
¥ name| [stories| | benchmarkStart
Metrics Visualization

Name - blink_perf.layout ¥ blink_perf.layout 4
2018-11-20 21:00:58 2018-11-20 21:13:28
latin-ebook ~ = 525.990 ms =
latin-ebook-resize ~ = 2,388.529 ms =
hindi x ' | blink_perflayout 2018-11-20 21:00:56 ¥| | 0=0.01 | [%pavg v| | Export| ¥ Showall Help Feedback

¥ name| [/ stories| ' benchmarkStart
Metrics Visualization

Name - blink_perf.layout ¥ blink_perf.layout 4
2018-11-20 21:00:58 2018-11-20 21:13:28

hindi-line-layout ~ = 218.094 =

34 © 2019 Arm Limited

-114% © =
4.2% O =

+6.9% &) =

arm

Miscellaneous optimizations

* Helping out with V8's pointer compressionimplementation on AArch64
- improved performance of Speedometer by 1%

* Instruction scheduling improvements for V8 builtins
- improved other JS benchmarks (octane, jetstream, etc) by 1.2%

* Some improvements for brotli as well
- 5% reduction in decompression time on little cores

35 © 2019 Arm Limited a r m

