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About Igalia

● Worker-owned, employee-run Open Source 
consultancy company, based in Galicia, Spain.



About Igalia

● ~62 employees around the world.
● Areas

○ Chromium/Blink, WebKit and Servo;
○ Compilers, JavaScript engines (V8, JSC); 
○ Multimedia, Kernel, Networking;
○ Accessibility, Virtualization & Cloud.



About Igalia



Goals
&

Motivation



Goal

● Being able to run Chromium natively on 
Wayland-based systems.



Motivation

● Wayland is a mature solution.
● Demand from different industries.
− Automotive
− Mobile
− Desktop



Background



Background - Ozone/Wayland

● By Intel / 01.org.

● Ozone project (original).
○ Abstraction layer for the construction of accelerated 

surfaces underlying the Aura toolkit, as well as input 
devices assignment and event handling.

○ Backends:
■ DRI -> DRM

● GBM
● ChromeOS

■ Wayland (off trunk)
● Linux

https://chromium.googlesource.com/chromium/src/+/master/docs/ozone_overview.md
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Background - Ozone/Wayland

● Good community adoption.
● Project entered in “maintenance mode”.

○ December/2015.
○ Chromium m49.

■ Today’s ToT is m63.



● In the meanwhile, Ozone layer in ToT received two new 
backends:
○ x11
○ wayland

 

Background - Cr Upstream (1/)

●  Is the problem solved?

● The original “desktop integration” approach taken in 
Ozone/Wayland did not comply with the way future 
Linux desktop Chrome is foreseen.



Background - Desktop integration
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Background - Cr Upstream (2/)
● Ozone project
− Abstraction layer for the construction of accelerated 

surfaces underlying the UI Service (aka Mus), as 
well as input devices assignment and event 
handling.

− Backends:
■ ChromeOS

● DRM / GBM
● x11
● Wayland

■ Linux

https://chromium.googlesource.com/chromium/src/+/master/docs/ozone_overview.md


New developments

Phase 1 - The bring up



Phase 1 - The bring up
● Sept-Oct/16

○ Igalia brought up of Ozone’s Wayland backend in ToT.
○ Experimented with “Ozone != ChromeOS”.
○ Documentation
○ Buildbots

https://chromium.googlesource.com/chromium/src/+/master/docs/ozone_overview.md
https://build.chromium.org/p/chromium.fyi/builders/Ozone%20Linux/


Phase 1 - CrOS

● Internal-window mode
○ CrOS has a Window Manager (WM) and a 

ScreenManager (SM).
○ Chrome and other app windows in the 

system
■ end up sharing a single display.
■ are embedded within a single top-level 
acceleratedWidget.



Phase 1 - Desktop Chrome

● External-window mode
○ Desktop Chrome has no WM.

■ One acceleratedWidget per Chrome window.
■ User manipulates acceleratedWidgets via the 

host OS window.
● maximize, minimize, resizing, dragging, fullscreen.

○ Desktop Chrome has no SM.



Phase 1 - Demo
● Nov-Dec/16

○ CES demo: Linux/AGL/Wayland on R-Car M3.
○ meta-browser

http://github.com/igalia/meta-browser
http://www.youtube.com/watch?v=-D4ZaWtwatE


Phase 1 - Perf
● Nov-Dec/16

○ Performance on BrowserBench GPU tests



New developments

Phase 2 - Chrome / Mus



Mus’ External Window Mode (1/)  

● Modify IWM so that it creates native 
acceleratedWidget’s for each top-level window.
○ Extend Mus and Ozone to support ‘External 

Window’ mode.

● No major functionality loss if compared to stock 
Chrome.



Mus’ External Window Mode (2/)
● Extend the mus_demo to work in ‘external window’ 

mode.
● Rework internal window mode assumptions in the 

code
○ 1:1 relation of ws::Display and display::Display.

● Extend Mus to support ‘external window mode’.
● Extend Ozone to work on ‘external window’ mode.
● Make the code that handles the existing –mus 

command line parameter non-ChromeOS specific.
○ Chrome today launches the same way it ought 

to, for Chrome/Mus.

https://bugs.chromium.org/p/chromium/issues/detail?id=693081


Mus’ External Window Mode (3/)
● Added support to:

○ XDG v6.
○ Keyboard events.
○ Mouse cursors.
○ Touch events (thanks to Collabora!).
○ Multiple windows.
○ Built-in window decoration.
○ Window closing.
○ Menus and widgets.
○ Support to common windowing features:

■ maximize, minimize, restore,
fullscreen, dragging and resizing.



Mus’ External Window Mode (4/)
● Changed ownership model of some objects.
● Implemented keyboard/IME service integration.
● Implemented a slightly custom “window tree 

hierarchy”.
● Reworked our “access policy”.
● Followed mushrome’s process model.
● Worked extensively on stability and hardness of 

our impl.



Mus’ External Window Mode (5/) 

● What is the status today?
Ready for alpha testing.

http://www.youtube.com/watch?v=bPK966yHQM4
http://www.youtube.com/watch?v=FlsnQopAMJk


Mus’ External Window Mode (6/)

● Performance improvements (½)

http://www.youtube.com/watch?v=Mh4JMnF6v8M


Mus’ External Window Mode (7/)

● Performance improvements (2/2)

http://www.youtube.com/watch?v=61X66tzxFIY


Perf

● May/17
○ Performance on BrowserBench GPU tests



About the project (1/)

● The project is being hosted on GitHub.
● Well defined contribution policy:

○ Peer review.
○ Buildbot running existing tests:

■ services_unittests and ozone_unittests.
● mus_demo_unittests (extended to launch 

multiple windows).

https://github.com/igalia/chromium/commits/ozone-wayland-dev


About the project (2/)

● Rebase strategy:
○ Weekly based.
○ Continuous history clean up.

■ git commit --fixup <SHA>
■ Eliminate commit + revert “commit” pairs.
■ Use of [DoNotCarryForward] tag.

● Periodic sync up with Google.



TODO

● Fix drag and drop.
● Fix clipboard.

○ it works as in internal window mode.
● Multi screen support.
● Non-english keyboard layouts.
● Ensure no feature losses or major performance 

penalties when compared to stock Chromium 
X11/Linux.

● Start to upstream the changes.



TODO

● Integration with AGL.
● Release desktop installers (.deb .rpm).



Breakout session

● Upstream strategy
○ walkthrough of our impl.
○ wayland security review.

● UI / GPU split
○ Future: musws and musgpu in separate 

processes.
○ https://crbug.com/643746

● Mojo-fication of Ozone/Wayland.

https://crbug.com/643746


Questions?

tonikitoo@igalia.com - Antonio Gomes

msisov@igalia.com - Maksim Sisov

mailto:tonikitoo@igalia.com
mailto:mscho@igalia.com

