
The Chromium/Wayland project

WebEngines Hackfest
(Oct/2017)

Antonio Gomes, tonikitoo@
Maksim Sisov, msisov@

Agenda

● About Igalia

● Goals & Motivation

● Background

● Developments

● Demonstration

About Igalia

● Worker-owned, employee-run Open Source
consultancy company, based in Galicia, Spain.

About Igalia

● ~62 employees around the world.
● Areas

○ Chromium/Blink, WebKit and Servo;
○ Compilers, JavaScript engines (V8, JSC);
○ Multimedia, Kernel, Networking;
○ Accessibility, Virtualization & Cloud.

About Igalia

Goals
&

Motivation

Goal

● Being able to run Chromium natively on
Wayland-based systems.

Motivation

● Wayland is a mature solution.
● Demand from different industries.
− Automotive
− Mobile
− Desktop

Background

Background - Ozone/Wayland

● By Intel / 01.org.

● Ozone project (original).
○ Abstraction layer for the construction of accelerated

surfaces underlying the Aura toolkit, as well as input
devices assignment and event handling.

○ Backends:
■ DRI -> DRM

● GBM
● ChromeOS

■ Wayland (off trunk)
● Linux

https://chromium.googlesource.com/chromium/src/+/master/docs/ozone_overview.md

Background - Ozone/Wayland

Browser process

desktop integration

Renderer process

x11 win

Browser process

desktop integration

Renderer process

 GPU process

ozone platform
wayland connection

IPC (old API)

x11 win

ozone/wayland

GPU process

Desktop integration Desktop integration (01.org)

Background - Ozone/Wayland

● Good community adoption.
● Project entered in “maintenance mode”.

○ December/2015.
○ Chromium m49.

■ Today’s ToT is m63.

● In the meanwhile, Ozone layer in ToT received two new
backends:
○ x11
○ wayland

Background - Cr Upstream (1/)

● Is the problem solved?

● The original “desktop integration” approach taken in
Ozone/Wayland did not comply with the way future
Linux desktop Chrome is foreseen.

Background - Desktop integration

Browser process

Renderer process

UI Service

desktop integration

ozone / wayland
(connection)

IPC (Mojo API)

Mus Linux desktop integration

Gpu service
(thread)

Browser process

desktop integration

Renderer process

 GPU process

ozone platform
wayland connection

IPC (old API)

Linux desktop integration (01.org)

x11 win

ozone/wayland

ozone / x11

Window
Server

x11 win

aura/mus

Browser process

https://www.chromium.org/developers/design-documents/mojo

Background - Cr Upstream (2/)
● Ozone project
− Abstraction layer for the construction of accelerated

surfaces underlying the UI Service (aka Mus), as
well as input devices assignment and event
handling.

− Backends:
■ ChromeOS

● DRM / GBM
● x11
● Wayland

■ Linux

https://chromium.googlesource.com/chromium/src/+/master/docs/ozone_overview.md

New developments

Phase 1 - The bring up

Phase 1 - The bring up
● Sept-Oct/16

○ Igalia brought up of Ozone’s Wayland backend in ToT.
○ Experimented with “Ozone != ChromeOS”.
○ Documentation
○ Buildbots

https://chromium.googlesource.com/chromium/src/+/master/docs/ozone_overview.md
https://build.chromium.org/p/chromium.fyi/builders/Ozone%20Linux/

Phase 1 - CrOS

● Internal-window mode
○ CrOS has a Window Manager (WM) and a

ScreenManager (SM).
○ Chrome and other app windows in the

system
■ end up sharing a single display.
■ are embedded within a single top-level
acceleratedWidget.

Phase 1 - Desktop Chrome

● External-window mode
○ Desktop Chrome has no WM.

■ One acceleratedWidget per Chrome window.
■ User manipulates acceleratedWidgets via the

host OS window.
● maximize, minimize, resizing, dragging, fullscreen.

○ Desktop Chrome has no SM.

Phase 1 - Demo
● Nov-Dec/16

○ CES demo: Linux/AGL/Wayland on R-Car M3.
○ meta-browser

http://github.com/igalia/meta-browser
http://www.youtube.com/watch?v=-D4ZaWtwatE

Phase 1 - Perf
● Nov-Dec/16

○ Performance on BrowserBench GPU tests

New developments

Phase 2 - Chrome / Mus

Mus’ External Window Mode (1/)

● Modify IWM so that it creates native
acceleratedWidget’s for each top-level window.
○ Extend Mus and Ozone to support ‘External

Window’ mode.

● No major functionality loss if compared to stock
Chrome.

Mus’ External Window Mode (2/)
● Extend the mus_demo to work in ‘external window’

mode.
● Rework internal window mode assumptions in the

code
○ 1:1 relation of ws::Display and display::Display.

● Extend Mus to support ‘external window mode’.
● Extend Ozone to work on ‘external window’ mode.
● Make the code that handles the existing –mus

command line parameter non-ChromeOS specific.
○ Chrome today launches the same way it ought

to, for Chrome/Mus.

https://bugs.chromium.org/p/chromium/issues/detail?id=693081

Mus’ External Window Mode (3/)
● Added support to:

○ XDG v6.
○ Keyboard events.
○ Mouse cursors.
○ Touch events (thanks to Collabora!).
○ Multiple windows.
○ Built-in window decoration.
○ Window closing.
○ Menus and widgets.
○ Support to common windowing features:

■ maximize, minimize, restore,
fullscreen, dragging and resizing.

Mus’ External Window Mode (4/)
● Changed ownership model of some objects.
● Implemented keyboard/IME service integration.
● Implemented a slightly custom “window tree

hierarchy”.
● Reworked our “access policy”.
● Followed mushrome’s process model.
● Worked extensively on stability and hardness of

our impl.

Mus’ External Window Mode (5/)

● What is the status today?
Ready for alpha testing.

http://www.youtube.com/watch?v=bPK966yHQM4
http://www.youtube.com/watch?v=FlsnQopAMJk

Mus’ External Window Mode (6/)

● Performance improvements (½)

http://www.youtube.com/watch?v=Mh4JMnF6v8M

Mus’ External Window Mode (7/)

● Performance improvements (2/2)

http://www.youtube.com/watch?v=61X66tzxFIY

Perf

● May/17
○ Performance on BrowserBench GPU tests

About the project (1/)

● The project is being hosted on GitHub.
● Well defined contribution policy:

○ Peer review.
○ Buildbot running existing tests:

■ services_unittests and ozone_unittests.
● mus_demo_unittests (extended to launch

multiple windows).

https://github.com/igalia/chromium/commits/ozone-wayland-dev

About the project (2/)

● Rebase strategy:
○ Weekly based.
○ Continuous history clean up.

■ git commit --fixup <SHA>
■ Eliminate commit + revert “commit” pairs.
■ Use of [DoNotCarryForward] tag.

● Periodic sync up with Google.

TODO

● Fix drag and drop.
● Fix clipboard.

○ it works as in internal window mode.
● Multi screen support.
● Non-english keyboard layouts.
● Ensure no feature losses or major performance

penalties when compared to stock Chromium
X11/Linux.

● Start to upstream the changes.

TODO

● Integration with AGL.
● Release desktop installers (.deb .rpm).

Breakout session

● Upstream strategy
○ walkthrough of our impl.
○ wayland security review.

● UI / GPU split
○ Future: musws and musgpu in separate

processes.
○ https://crbug.com/643746

● Mojo-fication of Ozone/Wayland.

https://crbug.com/643746

Questions?

tonikitoo@igalia.com - Antonio Gomes

msisov@igalia.com - Maksim Sisov

mailto:tonikitoo@igalia.com
mailto:mscho@igalia.com

