
Optimizing zlib for
A deflated story

Adenilson Cavalcanti
BS. MSc.
Staff Engineer - Arm San Jose (CA)

What to optimize in Chromium

What to optimize in Chromium

● Too big.
● Too many areas.
● What would be helpful?

What to optimize in Chromium

Bulk of content still is:
● Text.
● Images.

What to optimize in Chromium

Bulk of content still is:
● Text.
● Images.

Text Image

What to optimize in Chromium

Bulk of content still is:
● Text.
● Images.

Text Image

PNG

● Powerful format: Palette, pre-filters, compressed.
● Encoder affects behavior.
● Libpng and zlib are ‘Bros!’.

Meet Mr. Parrot

Source: https://upload.wikimedia.org/wikipedia/commons/3/3f/ZebraHighRes.png

https://upload.wikimedia.org/wikipedia/commons/3/3f/ZebraHighRes.png

Parrots are not created equal

Parrots are not created equal

Original: 2.7MB

Palette: 0.8MB

Zopfli: 2.6MB

Features affect hotspots

NEON: Advanced SIMD
(Single Instruction Multiple Data)

● Optional in Armv7.
● Mandatory in Armv8.

Registers@Armv7

● 16 registers@128 bits: Q0 - Q15.
● 32 registers@64bits: D0 - D31.
● Varied set of instructions: load, store, add, mul, etc.

Registers@Armv8 (SIMD&FP, V0 - V31)

● 32 registers@128 bits: Q0 - V31.
● 32 registers@64bits: D0 - D31.
● 32 registers@32bits: S0 - S31.
● 32 registers@8bits: H0 - H31.
● Varied set of instructions: load, store, add, mul, etc.

An example: VADD.I16 Q0, Q1, Q2

Candidates

● Inflate_fast: zlib.
● Adler32: zlib.
● ImageFrame: Blink.
● png_do_expand_palette:

libpng.

Why zlib?

Zlib

Used everywhere (libpng,
Skia, freetype, cronet,
blink, chrome, linux
kernel, etc).

Old code base released
in 1995.

Written in K&R C style.

Context

Lacks any optimizations
for ARM CPUs.

Problem statement

Identify potential
optimization candidates
and verify positive effects
in Chromium.

Potential problems

● Viability of optimization.
● Positive effects.
● Upstreaming.

Implementation

Adler-32

https://en.wikipedia.org/wiki/Adler-32

https://en.wikipedia.org/wiki/Adler-32

Adler-32: simplistic implementation

Problems

● Zlib’s Adler-32 was more than 7x faster than
naive implementation.

● It is hard to vectorize the following computation:

Problems: how to represent pair[1] or ‘B’?

Problems: how to represent pair[1] or ‘B’?

Highly technical drawing (Jan 2017)

Highly technical drawing (Jan 2017)

‘Taps’ to the rescue

Assembly:
https://godbolt.org/g/KMeBAJ

https://godbolt.org/g/KMeBAJ

Happy end! Up to 18% performance gain in PNG

https://bugs.chromium.org/p/chromium/issues/detail?id=688601

https://bugs.chromium.org/p/chromium/issues/detail?id=688601

Inffast (Simon Hosie)
● Second candidate in the perf

profiling was inflate_fast.
● Very high level idea: perform

long loads/stores in the byte
array.

● Major gains: up to 30% faster!

https://bugs.chromium.org/p/chromium/is
sues/detail?id=697280

https://bugs.chromium.org/p/chromium/issues/detail?id=697280
https://bugs.chromium.org/p/chromium/issues/detail?id=697280

Libpng (Richard Townsend)

● NEON optimization in libpng.
● From 10 to 30% improvement.
● Depends on png using a palette.

https://bugs.chromium.org/p/chromium/issues/detail?id=706134

https://bugs.chromium.org/p/chromium/issues/detail?id=706134

Impact
Combined effect of 3 patches

Chrome trace: vanilla Nexus6@2014 (116ms)

Chrome trace: patched (73ms) 1.6x improvement

Comparing Arm x Intel

Source: https://commons.wikimedia.org/wiki/File:Apple_and_Orange_-_they_do_not_compare.jpg

https://commons.wikimedia.org/wiki/File:Apple_and_Orange_-_they_do_not_compare.jpg

Keeping in mind
● SnapdragonTM 805 @2014.
● 2.7Ghz KraitTM 450.
● 2MB L2 cache
● 28nm lithography.
● Cellphone.
● EAS kernel.

● 5Y10C launched @2015.
● 2Ghz Intel m5.
● 4MB cache.
● 14nm lithography.
● Ultrabook.
● Regular linux kernel.

Chrome trace: Intel m5@2016 (66ms)

Effect of NEON optimization in Zlib

Lessons learned

● arm cores can benefit a lot from NEON optimizations.
● Performance gains of 2 generations of silicon.
● It pays off to work in a lower software layer (e.g.

zlib/libpng).

Happy end? Not yet...

● Requested to perform a study comparing zlibs forks.
● Upstream ARM optimizations.
● Move Chromium to a new/better maintained zlib.

Happy end? Not yet...
● Requested to perform a study comparing zlibs forks. Done!

○ https://goo.gl/ZUoy96
● Upstream ARM optimizations. Done!

○ https://github.com/Dead2/zlib-ng/commit/ec02ecf104e1d3f183
6a908a359f20aa93494df5

● Move Chromium to a new/actively maintained zlib.
○ Upgraded/moved PDFium to Chromium’s zlib.
○ Zlib-ng didn’t release a stable release.

https://goo.gl/ZUoy96
https://github.com/Dead2/zlib-ng/commit/ec02ecf104e1d3f1836a908a359f20aa93494df5
https://github.com/Dead2/zlib-ng/commit/ec02ecf104e1d3f1836a908a359f20aa93494df5

January

Initial investigation

February

Zlib forks
benchmarking

... August

Still no zlib-ng release

April

Upstreaming to zlib-ng

All 3 patches are done

PDFium zlib

Change of strategy

NEON inffast: featured in M62

https://bugs.chromium.org/p/chromium/issues/detail?id=697280

landed

https://bugs.chromium.org/p/chromium/issues/detail?id=697280

cronet: NEON != ARMv6

Source: https://xkcd.com/1172/

https://xkcd.com/1172/

After re-landing… An internal app was broken.

Source: https://xkcd.com/1172/

https://xkcd.com/1172/

Second revert (i.e. revert-revert-revert)

Misha Efimov@Google found the bug in the Java app client last Wednesday (Sep 27th).

reverted

Re-re-landed on Thur 28th

re-land

What comes next

● Land Adler-32 optimization* (Noel Gordon@Google
implemented the same algorithm for Intel).

● Land the libpng optimization.
● CRC32: Armv8 instruction is about 10x faster.
● Compression comes next.

*Just landed last Friday:
https://chromium-review.googlesource.com/c/chromium/src/+/660019

https://chromium-review.googlesource.com/c/chromium/src/+/660019

Adler-32 landed on Fri 29th

Adler-32

https://goo.gl/RTgkGe

Neon inflate

https://goo.gl/RTgkGe

What comes next

Zlib users should consider migrating to Chromium’s zlib.

● Land the libpng optimization.
● CRC32: ARMv8 instruction is about 10x faster.
● Fix infback corner case.
● Compression comes next.

Special Thanks

● Igalia for the invite (Xabier Rodriguez Calvar).
● Arm for sponsoring the trip.
● Chris Blume@Google.
● Team Arm@UK: Dave Rodgman, Matteo Franchin, Richard

Townsend, Stephen Kyle.
● Team Arm@US: Amaury Leleyzour, Simon Hosie.
● Compiler explorer: https://godbolt.org

https://godbolt.org

Questions?

The Arm Trademarks featured in this presentation are registered trademarks or

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights

reserved. All other marks featured may be trademarks of their respective owners

https://www.arm.com/company/policies/trademarks

https://www.arm.com/company/policies/trademarks

