
BigInt: Integers as 
big as you want in 
JavaScript
Daniel Ehrenberg
Igalia
In partnership with Bloomberg
Web Engines Hackfest 2017



Why add something?

● Represent bigger Integers:
● inode numbers
● Microseconds since the Unix epoch
● Hashes/checksums
● FFIs to languages with larger integer types
● Basis for users implementing a Decimal type
● Manipulate binary data containing 64-bit ints
● Project Euler...



What would make sense in JS?

● Sadness: 1 is 1.0
○ Resolution: Use 1n for integers

● Sadness: 12374699872164983276428373n + 1 = ?
○ Resolution: Throw a TypeError

● Sadness: Entire ecosystem is based on Numbers
○ Resolution: Throw more TypeErrors

● Sadness: Number means float, so we can’t call it BigNum
○ Resolution: BigInt!



Add BigInt or Int64?
● For Int64

○ Most programmer requests fit in this range (or 
Uint64)

○ Programmers assume Int64 will be faster
● For BigInt

○ Overflowing is usually a bug
○ High-level dynamic languages usually opt for BigInt
○ If we don’t do BigInt, need multiple size types
○ BigInt.asIntN/asUintN provides overflow
○ Implementers say BigInt should be fast

● Resolution: BigInt



Enter TC39

● JavaScript standards committee
● Meets every two months
● Representatives from

○ Browser vendors
○ JavaScript programmers
○ Framework/library authors
○ Language experts
○ Node.js

● Current draft spec at https://tc39.github.io/ecma262/ 

https://tc39.github.io/ecma262/


History of Int64/BigInt in TC39

● ES1 has only Number--double float
● Integer types in Waldemar Horwat’s ES2 proposal (1999)
● ES2, ES3 are editorial/library changes 
● Proposed for ES4 (~2004-2008) -- abandoned
● ES5, ES5.1 is intentionally minimal
● ES6 proposed “value types” -- deferred
● November 2016, Brendan Eich proposes Int64/Uint64

https://tc39.github.io/ecma262/
https://www.ecma-international.org/activities/Languages/Language%20overview.pdf


TC39 Stage process

● Stage 1: An idea in a GitHub repo
● Stage 2: Committee supports initial draft
● Stage 3: Solid draft resolving all committee concerns
● Stage 4: Two implementations and conformance tests; 

joins the spec working draft

● In the background: Annually, annual official versions 
declared, for “reasons”



History of Int64/BigInt in TC39

● November 2016, Brendan Eich proposes Int64/Uint64
○ Stage 1!

● V8 team proposes BigInt rather than Int64
● January 2017, agreement on change to BigInt
● March 2017, BigInt to Stage 2
● May 2017, gradually work out more spec issues
● July 2017, BigInt to Stage 3
● Draft BigInt spec

https://tc39.github.io/proposal-bigint/


Meanwhile, in code...

● Implementations in progress in
○ SpiderMonkey
○ V8
○ Babel polyfill

● Conformance tests (test262) in progress
● Other browsers expressed interest
● My prediction: Usable in multiple browsers next year

https://bugzilla.mozilla.org/show_bug.cgi?id=1366287
https://bugs.chromium.org/p/v8/issues/detail?id=6791
https://github.com/babel/babel/pull/6015
https://github.com/tc39/test262/issues/1056


Questions?

● TC39 heckling welcome


